Transdermal Drug Delivery Systems (TDDS) have gained attention as a viable substitute for traditional drug administration methods because of their controlled release capabilities and non-invasive design. Microneedles are a new and effective technology that has attracted a lot of attention recently to enhance the capabilities of TDDS further. The study on microneedles and their potential to improve transdermal medication delivery is thoroughly reviewed in this review article. The study initiates by clarifying the difficulties linked to traditional medication delivery techniques and the benefits provided by transdermal channels. The article then explores the development of microneedle technology, outlining the several kinds of microneedles-solid, hollow, and dissolving-as well as their uses. Because of their special capacity to penetrate the skin's protective layer painlessly and their ability to distribute drugs precisely and precisely, microneedles are a highly useful instrument in pharmaceutical research. The materials, geometry, and manufacturing processes that affect the design and creation of microneedles are critically analyzed and presented. The manuscript delves into the latest developments in microneedle technology, encompassing the utilization of biodegradable polymers, smart materials, and sensing components for in-the-- moment monitoring. This analysis concludes by highlighting the noteworthy advancements in the field of microneedles and their potential to transform transdermal drug delivery systems. This thorough knowledge seeks to further the current discussion in pharmaceutical research, encouraging creativity and opening the door for the creation of safer, more effective drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115672018301931240624072453DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
transdermal drug
12
delivery systems
12
microneedles potential
8
medication delivery
8
microneedle technology
8
microneedles
6
delivery
6
transdermal
5
drug
5

Similar Publications

High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches.

Nat Commun

January 2025

College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.

View Article and Find Full Text PDF

Tobacco product flavour policies in the USA.

Tob Control

January 2025

Department of Health Policy and Management, Yale University School of Public Health, New Haven, Connecticut, USA

Objectives: Characterise US residents' exposure to restrictions on sales of flavoured electronic nicotine delivery system (ENDS), cigars and menthol cigarettes across states and time, and assess correlations between these policies.

Methods: From 2022 to 2024, we compiled flavour policy locations from advocacy groups and online searches, located corresponding legal texts and reviewed these to identify policy details, including effective dates. Using census data, we calculated the proportion of state residents covered by each policy quarterly from 2009 to 2024 and estimated correlations between them and cigarette taxes.

View Article and Find Full Text PDF

A woman in her 40s presented with severe post-bariatric hypoglycaemia that persisted despite nutritional therapy and pharmacological therapy with acarbose and subcutaneous octreotide with meals. The nutritional limitations were difficult to sustain, and she developed adverse effects to the pharmacological therapy, and hence, doses could not be increased. She was subsequently treated with subcutaneous octreotide via an insulin pump, with a continuous basal rate and additional bolus doses with meals.

View Article and Find Full Text PDF

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment.

Int J Pharm

January 2025

Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!