Collective intelligence facilitates emergent resource partitioning through frequency-dependent learning.

Philos Trans R Soc Lond B Biol Sci

Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich Winterthurerstrasse 190, 8057, Switzerland.

Published: September 2024

Deciding where to forage must not only account for variations in habitat quality but also where others might forage. Recent studies have suggested that when individuals remember recent foraging outcomes, negative frequency-dependent learning can allow them to avoid resources exploited by others (indirect competition). This process can drive the emergence of consistent differences in resource use (resource partitioning) at the population level. However, indirect cues of competition can be difficult for individuals to sense. Here, we propose that information pooling through collective decision-making-i.e. collective intelligence-can allow populations of group-living animals to more effectively partition resources relative to populations of solitary animals. We test this hypothesis by simulating (i) individuals preferring to forage where they were recently successful and (ii) cohesive groups that choose one resource using a majority rule. While solitary animals can partially avoid indirect competition through negative frequency-dependent learning, resource partitioning is more likely to emerge in populations of group-living animals. Populations of larger groups also better partition resources than populations of smaller groups, especially in environments with more choices. Our results give insight into the value of long- versus short-term memory, home range sizes and the evolution of specialization, optimal group sizes and territoriality. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293853PMC
http://dx.doi.org/10.1098/rstb.2023.0177DOI Listing

Publication Analysis

Top Keywords

resource partitioning
12
frequency-dependent learning
12
negative frequency-dependent
8
indirect competition
8
populations group-living
8
group-living animals
8
partition resources
8
solitary animals
8
resource
5
populations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!