Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261156 | PMC |
http://dx.doi.org/10.1111/mpp.13497 | DOI Listing |
PLoS One
January 2025
Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America.
We examined the evolutionary history of Phytophthora infestans and its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates of Phytophthora species in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two Mexican Phytophthora species, P.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.
Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Department of Plant Pathology, University of California, Davis, CA 95616, USA.
Evidence of unintended introductions of species into native habitats has become increasingly prevalent in California. If not managed adequately, species can become devastating agricultural and forest plant pathogens. Additionally, California's natural areas, characterized by a Mediterranean climate and dominated by chaparral (evergreen, drought-tolerant shrubs) and oak woodlands, lack sufficient baseline knowledge on biology and ecology, hindering effective management efforts.
View Article and Find Full Text PDFPlant Dis
January 2025
Barani agricultural research institute, Chakwal, chakwal, Punjab, Pakistan;
Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Université Claude Bernard Lyon 1, Laboratoire d'Écologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France;
, able to establish symbiosis with mutualistic bacteria of the genus , is one of the main species in European riparian environments, where it performs numerous biological and socio-economic functions. However, riparian ecosystems face a growing threat from , a highly aggressive waterborne pathogen causing severe dieback in . To date, the tripartite interaction between the host plant, the symbiont and the pathogen remains unexplored but is critical for understanding how pathogen-induced stress influences the nodule molecular machinery and so on the host-symbiont metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!