Role of adaptor protein complexes in generating functionally distinct synaptic vesicle pools.

J Physiol

Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Published: July 2024

The synaptic vesicle (SV) cycle ensures the release of neurotransmitters and the replenishment of SVs to sustain neuronal activity. Multiple endocytosis and sorting pathways contribute to the recapture of the SV membrane and proteins after fusion. Adaptor protein (AP) complexes are among the critical components of the SV retrieval machinery. The canonical clathrin adaptor AP2 ensures the replenishment of most SVs across many neuronal populations. An alternative AP1/AP3-dependent process mediates the formation of a subset of SVs that differ from AP2 vesicles in molecular composition and respond preferentially during higher frequency firing. Furthermore, recent studies show that vesicular transporters for different neurotransmitters depend to a different extent on the AP3 pathway and this affects the release properties of the respective neurotransmitters. This review focuses on the current understanding of the AP-dependent molecular and functional diversity among SVs. We also discuss the contribution of these pathways to the regulation of neurotransmitter release across neuronal populations.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP286179DOI Listing

Publication Analysis

Top Keywords

adaptor protein
8
protein complexes
8
synaptic vesicle
8
replenishment svs
8
neuronal populations
8
role adaptor
4
complexes generating
4
generating functionally
4
functionally distinct
4
distinct synaptic
4

Similar Publications

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Cyclin F, a non-canonical member of the cyclin protein family, plays a critical role in regulating the precise transitions of cell-cycle events. Unlike canonical cyclins, which bind and activate cyclin-dependent kinases (CDKs), Cyclin F functions as a substrate receptor protein within the Skp1-Cullin-F box (SCF) E3 ubiquitin ligase complex, enabling the ubiquitylation of target proteins. The structural features that distinguish Cyclin F as a ligase adaptor and the mechanisms underlying its selective substrate recruitment over Cyclin A, which functions in complex with CDK2 at a similar time in the cell cycle, remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!