Biological molecular studies of meningiomas have also developed with the development of molecular biological methods. In 2013, Clark et al. reported that driver genetic mutations other than , including , , , and , were associated with meningioma development. In 2017, Sahm et al. proposed a classification of meningiomas based on global methylation status, which was more accurate in predicting prognosis than conventional WHO grading. In 2022, based on this classification, various groups reported an integrated classification that comprehensively included some biological molecular abnormalities, such as DNA mutations, copy number alterations, and RNA sequences. This field is expected to elucidate the mechanism of meningioma development and further research is expected to lead to the development of effective molecularly targeted therapeutics and biomarkers of radiosensitivity in the future. In this article, we summarize the current status and prospects of these biological molecular studies.

Download full-text PDF

Source
http://dx.doi.org/10.11477/mf.1436204971DOI Listing

Publication Analysis

Top Keywords

biological molecular
12
molecular studies
8
meningioma development
8
[current status
4
status genetic/molecular
4
genetic/molecular abnormality
4
abnormality analysis
4
analysis prognosis
4
prognosis prediction
4
prediction meningioma]
4

Similar Publications

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.

View Article and Find Full Text PDF

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE.

View Article and Find Full Text PDF

Autophagy has emerged as an essential quality control pathway in plants that selectively and rapidly removes damaged or unwanted cellular components to maintain cellular homeostasis. It can recycle a broad range of cargoes, including entire organelles, protein aggregates, and even invading microbes. It involves the de novo biogenesis of a new cellular compartment, making it intimately linked to endomembrane trafficking pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!