Background And Aim: 3D fusion model of cone-beam computed tomography (CBCT) and oral scanned data can be used for the accurate design of root canal access and guide plates in root canal therapy (RCT). However, the pose accuracy of the dental pulp and crown in data registration has not been investigated, which affects the precise implementation of clinical planning goals. We aimed to establish a novel registration method based on pulp horn mapping surface (PHMSR), to evaluate the accuracy of PHMSR versus traditional methods for crown-pulp registration of CBCT and oral scan data.
Materials And Methods: This vitro study collected 8 groups of oral scanned and CBCT data in which the left mandibular teeth were not missing, No. 35 and No. 36 teeth were selected as the target teeth. The CBCT and scanned model were processed to generate equivalent point clouds. For the PHMSR method, the similarity between the feature directions of the pulp horn and the surface normal vectors of the crown were used to determine the mapping points in the CBCT point cloud that have a great influence on the pulp pose. The small surface with adjustable parameters is reconstructed near the mapping point of the crown, and the new matching point pairs between the point and the mapping surface are searched. The sparse iterative closest point (ICP) algorithm is used to solve the new matching point pairs. Then, in the C + + programming environment with a point cloud library (PCL), the PHMSR, the traditional sparse ICP, ICP, and coherent point drift (CPD) algorithms are used to register the point clouds under two different initial deviations. The root square mean error (RSME) of the crown, crown-pulp orientation deviation (CPOD), and position deviation (CPPD) were calculated to evaluate the registration accuracy. The significance between the groups was tested by a two-tailed paired t-test (p < 0.05).
Results: The crown RSME values of the sparse ICP method (0.257), the ICP method (0.217), and the CPD method (0.209) were not significantly different from the PHMSR method (0.250). The CPOD and CPPD values of the sparse ICP method (4.089 and 0.133), the ICP method (1.787 and 0.700), and the CPD method (1.665 and 0.718) than for the PHMSR method, which suggests that the accuracy of crown-pulp registration is higher with the PHMSR method.
Conclusion: Compared with the traditional method, the PHMSR method has a smaller crown-pulp registration accuracy and a clinically acceptable deviation range, these results support the use of PHMSR method instead of the traditional method for clinical planning of root canal therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637213 | PMC |
http://dx.doi.org/10.1186/s12903-024-04565-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!