Immune checkpoint blockade therapy targeting the programmed death-1(PD-1) pathway has shown remarkable efficacy and durable response in patients with various cancer types. Early prediction of therapeutic efficacy is important for optimizing treatment plans and avoiding potential side effects. In this work, we developed an efficient machine learning prediction method using routine hematologic and biochemical parameters to predict the efficacy of PD-1 combination treatment in Pan-Cancer patients. A total of 431 patients with nasopharyngeal carcinoma, esophageal cancer and lung cancer who underwent PD-1 checkpoint inhibitor combination therapy were included in this study. Patients were divided into two groups: progressive disease (PD) and disease control (DC) groups. Hematologic and biochemical parameters were collected before and at the third week of PD-1 therapy. Six machine learning models were developed and trained to predict the efficacy of PD-1 combination therapy at 8-12 weeks. Analysis of 57 blood biomarkers before and after three weeks of PD-1 combination therapy through statistical analysis, heatmaps, and principal component analysis did not accurately predict treatment outcome. However, with machine learning models, both the AdaBoost classifier and GBDT demonstrated high levels of prediction efficiency, with clinically acceptable AUC values exceeding 0.7. The AdaBoost classifier exhibited the highest performance among the 6 machine learning models, with a sensitivity of 0.85 and a specificity of 0.79. Our study demonstrated the potential of machine learning to predict the efficacy of PD-1 combination therapy based on changes in hematologic and biochemical parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265142 | PMC |
http://dx.doi.org/10.1186/s12935-024-03439-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!