A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Development of a Genus Identification Method for Poisonous Plants Using Real-Time PCR]. | LitMetric

We have developed a rapid genus identification method for poisonous plants. The real-time PCR using the TaqMan probe method was employed for detection, with the amplified targets being the "trnL (UAA)-intron" or "trnL-trnF intergenic spacer" regions of chloroplast DNA. The targeted plants were selected six genera (Aconitum, Colchicum, Veratrum, Brugmansia, Scopolia and Narcissus), which have been implicated in many instances of food poisoning in Japan. A tissue lysis solution was used for DNA extraction, which can be completed within approximate 30 min. A master mix corresponding to the tissue lysis solution was used for real-time PCR reagents. As a result, we were able to complete the entire process from DNA extraction to genus identification in 4 to 5 hr. The detection sensitivity was estimated at approximately 1 pg of DNA for all six plant genera. Remarkably, an amplification plot was discerned even with the crude cell lysates of all samples. It was also possible to obtain amplification curves for three plant samples that had been subjected to simulated cooking (boiling). This study suggests that the developed method can rapidly identify six genera of poisonous plants.

Download full-text PDF

Source
http://dx.doi.org/10.3358/shokueishi.65.53DOI Listing

Publication Analysis

Top Keywords

genus identification
12
poisonous plants
12
identification method
8
method poisonous
8
plants real-time
8
real-time pcr
8
tissue lysis
8
lysis solution
8
dna extraction
8
[development genus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!