Intraspecific variation in specialized metabolites plays a crucial role in the adaptive response to diverse environments. Two major subspecies, japonica and indica, are observed in Asian cultivated rice (Oryza sativa L.). Previously, we identified (3R)-β-tyrosine, a novel nonproteinogenic β-amino acid in plants, along with the enzyme tyrosine aminomutase (TAM1), which is required for β-tyrosine biosynthesis, in the japonica cultivar Nipponbare. Notably, TAM1 and β-tyrosine were preferentially distributed in japonica cultivars compared with indica cultivars. Considering its phytotoxicity and antimicrobial activity, intraspecific variation in β-tyrosine may contribute to the defensive potential of japonica rice. Investigation of the evolutionary trajectory of TAM1 and β-tyrosine should enhance our understanding of the evolution of rice defense. However, their distribution patterns in O. rufipogon, the direct ancestor of O. sativa, remain unclear. Therefore, in this study, we extensively examined TAM1 presence/absence and β-tyrosine content in 110 genetically and geographically diverse O. rufipogon accessions and revealed that they are characteristically observed in the ancestral subpopulation of japonica rice, while being absent or slightly accumulated in other subpopulations. Thus, we conclude that TAM1 and β-tyrosine in japonica rice are likely derived from its ancestral subpopulation. Furthermore, the high and low TAM1 possession rates and β-tyrosine content in japonica and indica rice, respectively, could be attributed to distribution patterns of TAM1 and β-tyrosine in their ancestral subpopulations. This study provides fundamental insights into the evolution of rice defense.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.24-00017DOI Listing

Publication Analysis

Top Keywords

japonica rice
16
tam1 β-tyrosine
16
ancestral subpopulation
12
β-tyrosine
9
tam1
8
japonica
8
subpopulation japonica
8
rice
8
rice oryza
8
intraspecific variation
8

Similar Publications

This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.

View Article and Find Full Text PDF

OsBBX2 Delays Flowering by Repressing Expression Under Long-Day Conditions in Rice.

Plants (Basel)

December 2024

State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.

Members of the B-Box (BBX) family of proteins play crucial roles in the growth and development of rice. Here, we identified a rice BBX protein, Oryza sativa BBX2 (OsBBX2), which exhibits the highest expression in the root. The transcription of follows a diurnal rhythm under photoperiodic conditions, peaking at dawn.

View Article and Find Full Text PDF

Yield-related traits have higher heritability and lower genotype-by-environment interaction, making them more suitable for genetic studies in comparison with the yield per se. Different populations have been developed and employed in QTL mapping; however, the use of reciprocal SSSLs is limited. In this study, three kinds of bi-parental populations were used to investigate the stable and novel QTLs on six yield-related traits, i.

View Article and Find Full Text PDF

Lower Cadmium Bioavailability and Toxicity in Japonica Rice than in Indica Rice: Mechanisms and Health Implications.

Environ Sci Technol

January 2025

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Cadmium (Cd) is efficiently transferred from soil to food crops, notably rice. Research indicates that indica rice grains may accumulate more Cd than japonica cultivars; however, differences in Cd bioavailability (the fraction of ingested rice Cd absorbed into the systemic circulation) and toxicity remain unexplored, thus hindering a comprehensive understanding of exposure and health risks. To address this, a mouse bioassay was conducted to evaluate the relative bioavailability (RBA) of Cd in 35 samples each of japonica and indica rice, determining which type exhibits lower Cd bioavailability.

View Article and Find Full Text PDF

Characterization of a Major Quantitative Trait Locus for the Whiteness of Rice Grain Using Chromosome Segment Substitution Lines.

Plants (Basel)

December 2024

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Zhongshan Biological Breeding Laboratory, Yangzhou University, Yangzhou 225009, China.

The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!