Background: Brain aging is a complex process that involves functional alterations in multiple subnetworks and brain regions. However, most previous studies investigating aging-related functional connectivity (FC) changes using resting-state functional magnetic resonance images (rs-fMRIs) have primarily focused on the linear correlation between brain subnetworks, ignoring the nonlinear casual properties of fMRI signals.

Methods: We introduced the neural Granger causality technique to investigate the sex-dependent nonlinear Granger connectivity (NGC) during aging on a publicly available dataset of 227 healthy participants acquired cross-sectionally in Leipzig, Germany.

Results: Our findings indicate that brain aging may cause widespread declines in NGC at both regional and subnetwork scales. These findings exhibit high reproducibility across different network sparsities, demonstrating the efficacy of static and dynamic analysis strategies. Females exhibit greater heterogeneity and reduced stability in NGC compared to males during aging, especially the NGC between the visual network and other subnetworks. Besides, NGC strengths can well reflect the individual cognitive function, which may therefore work as a sensitive metric in cognition-related experiments for individual-scale or group-scale mechanism understanding.

Conclusion: These findings indicate that NGC analysis is a potent tool for identifying sex-dependent brain aging patterns. Our results offer valuable perspectives that could substantially enhance the understanding of sex differences in neurological diseases in the future, especially in degenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2024.111088DOI Listing

Publication Analysis

Top Keywords

brain aging
16
sex-dependent nonlinear
8
nonlinear granger
8
granger connectivity
8
findings indicate
8
brain
6
aging
6
ngc
6
connectivity patterns
4
patterns brain
4

Similar Publications

Working memory processes and the histamine-3 receptor in schizophrenia: a [C]MK-8278 PET-fMRI study.

Psychopharmacology (Berl)

December 2024

Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.

Rationale: Working memory impairment is a prominent feature of schizophrenia which predicts clinical and functional outcomes. Preclinical data suggest histamine-3 receptor (H3R) expression in cortical pyramidal neurons may have a role in working memory, and post-mortem data has found disruptions of H3R expression in schizophrenia.

Objectives: We examined the role of H3R in vivo to elucidate its role on working memory impairment in schizophrenia.

View Article and Find Full Text PDF

A bacteria-responsive nanoplatform with biofilm dispersion and ROS scavenging for the healing of infected diabetic wounds.

Acta Biomater

December 2024

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China. Electronic address:

Delayed wound healing in patients with diabetes remains a major health challenge worldwide. Uncontrolled bacterial infection leads to excessive production of reactive oxygen species (ROS) and persistent inflammatory responses, which seriously hinder conventional physiological healing processes after injury. Biofilms, as protective barriers for bacteria, pose a critical obstacle to effective bacterial eradication.

View Article and Find Full Text PDF

The functional significance of brain asymmetry is still largely unknown. Studying the level of correlation of neuropeptide-degrading activities between subcellular fractions such as synaptosomal, of the left and right hemispheres of male rats during development and aging could provide relevant data on their functional role during these periods. The present study analyzes the level of correlation of a enkephalin- or angiotensin III-degrading activity, such as membrane-bound arginyl-aminopeptidase activity (M-B ArgAP) between the left versus right homogenate and/or synaptosomal subcellular fractions obtained and processed independently from both brain hemispheres during development and aging.

View Article and Find Full Text PDF

Variation in brain aging: A review and perspective on the utility of individualized approaches to the study of functional networks in aging.

Neurobiol Aging

December 2024

Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Psychology, Florida State University, Tallahassee, FL, USA; University of Illinois Urbana-Champaign, Champaign, IL, USA.

Healthy aging is associated with cognitive decline across multiple domains, including executive function, memory, and attention. These cognitive changes can often influence an individual's ability to function and quality of life. However, the degree to which individuals experience cognitive decline, as well as the trajectory of these changes, exhibits wide variability across people.

View Article and Find Full Text PDF

Brain derived β-interferon is a potential player in Alzheimer's disease pathogenesis and cognitive impairment.

Alzheimers Res Ther

December 2024

Department of Neurology and Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, China.

Background: Recent research has postulated that the activation of cGAS-STING-interferon signalling pathways could be implicated in the pathogenesis of Alzheimer's disease (AD). However, the precise types of interferons and related cytokines, both from the brain and periphery, responsible for cognitive impairment in patients with AD remain unclear.

Methods: A total of 131 participants (78 [59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!