Bioinspired film-terminated ridges for enhancing friction force on lubricated soft surfaces.

J Mech Behav Biomed Mater

College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China. Electronic address:

Published: September 2024

Enhancing friction force in lubricated, compliant contacts is of particular interest due to its wide application in various engineering and biological systems. In this study, we have developed bioinspired surfaces featuring film-terminated ridges, which exhibit a significant increase in lubricated friction force compared to flat samples. We propose that the enhanced sliding friction can be attributed to the energy dissipation at the lubricated interface caused by elastic hysteresis resulting from cyclic terminal film deformation. Furthermore, increasing inter-ridge spacing or reducing terminal film thickness are favorable design criteria for achieving high friction performance. These findings contribute to our understanding of controlling lubricated friction and provide valuable insights into surface design strategies for novel functional devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106660DOI Listing

Publication Analysis

Top Keywords

friction force
12
film-terminated ridges
8
enhancing friction
8
force lubricated
8
lubricated friction
8
terminal film
8
friction
6
lubricated
5
bioinspired film-terminated
4
ridges enhancing
4

Similar Publications

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Revealing the mechanism underlying the viscosity improvement of rice protein yogurt by the presence of in-situ-produced dextrans.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:

The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.

View Article and Find Full Text PDF

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.

View Article and Find Full Text PDF

Knitted fabrics are metamaterials with remarkable mechanical properties, such as extreme deformability and multiple history-dependent rest shapes. This Letter shows that those properties may stem from a continuous set of metastable states for a fabric free of external forces. This is evidenced through experiments, numerical simulations, and analytical developments.

View Article and Find Full Text PDF

Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!