Objectives: Spinal cord stimulation (SCS) is an alternative treatment option for painful diabetic polyneuropathy (PDPN). Differential target multiplexed (DTM)-SCS is proposed to be more effective than conventional (Con)-SCS. Animal studies are essential for understanding SCS mechanisms in PDPN pain relief. Although the Von Frey (VF) test is the gold standard for preclinical pain research, it has limitations. Operant testing using the conditioned place preference (CPP) test provides insights into spontaneous neuropathic pain relief and enhances the translatability of findings. This study aims to 1) use the CPP test to evaluate Con- and DTM-SCS effects on spontaneous neuropathic pain relief in PDPN animals and 2) investigate the correlation between mechanical hypersensitivity alleviation and spontaneous neuropathic pain relief.
Material And Methods: Diabetes was induced through streptozotocin injection in 32 rats; 16 animals developed PDPN and were implanted with a quadripolar lead. Rats were conditioned for Con-SCS (n = 8) or DTM-SCS (n = 7), and a preference score compared with sham was determined. After conditioning, a 30-minute SCS protocol was conducted. Mechanical sensitivity was assessed using VF before, during, and after SCS.
Results: There were no significant chamber preference changes for DTM-SCS (p = 0.3449) or Con-SCS (p = 0.3632). Subgroups of responders and nonresponders were identified with significant increases in preference score for responders for both DTM-SCS (-266.6 to 119.8; p = 0.0238; n = 4) and Con-SCS (-350.7 to 88.46; p = 0.0148; n = 3). No strong correlation between SCS-induced spontaneous neuropathic pain relief and effects on mechanical hypersensitivity in PDPN animals is noted.
Conclusions: The CPP test is a valuable tool to test the efficacy of the pain-relieving potential of various SCS paradigms in PDPN animals. The results of this study show no differences in spontaneous neuropathic pain relief between DTM- and Con-SCS in PDPN animals. Furthermore, there is no correlation between the effect of SCS in spontaneous pain relief and hind paw mechanical hypersensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurom.2024.06.007 | DOI Listing |
J Med Chem
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany.
The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.
View Article and Find Full Text PDFJA Clin Rep
January 2025
Department of Pain Clinic, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-Ku, Tokyo, 141-8625, Japan.
Background: Bilateral trigeminal neuralgia secondary to multiple sclerosis is an extremely rare condition. When Gasserian ganglion block is performed, it is necessary to achieve reliable long-term analgesic effects while avoiding treatment-related complications.
Case Presentation: A 49-year-old male with multiple sclerosis exhibited persistent dull pain and paroxysmal electric shock-like pain in his bilateral maxillary molars and mandible.
Neurosurgery
January 2025
Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Neurosurgery
January 2025
Department of Neurosurgery, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Chennai, Tamil Nadu, India.
Hum Brain Mapp
January 2025
Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!