Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264846PMC
http://dx.doi.org/10.1186/s12979-024-00449-wDOI Listing

Publication Analysis

Top Keywords

microgravity radiation
12
immune system
8
spaceflight-analog studies
8
synergistic interplay
4
radiation
4
interplay radiation
4
microgravity
4
radiation microgravity
4
microgravity spaceflight-related
4
spaceflight-related immunological
4

Similar Publications

Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP.

View Article and Find Full Text PDF

The effects of galactic cosmic radiation on reproductive physiology remain largely unknown. We determined the impact of near-continuous low-dose-rate Californium-252 neutron irradiation (1 mGy/day) as a space-relevant analog on litter size and number of resorptions at embryonic day (E) 12.5 (n = 19 radiated dams, n = 20 controls) and litter size, number of resorptions, fetal growth, and placental signaling and transcriptome (RNA sequencing) at E18.

View Article and Find Full Text PDF

Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8).

View Article and Find Full Text PDF

As space travel evolves from brief missions to longer expeditions, and with the rise of space tourism, there is increasing interest in understanding how space travel affects human reproductive physiology and the feasibility of procreation in space. Space travel presents various potential hazards to reproductive health such as exposure to ionizing radiation, exposure to changes in gravity, psychological stress, and disruptions to the endocrine and urogenital systems, as well as the circadian rhythm. This article explores how cosmic radiation and microgravity impact both female and male gametogenesis, embryogenesis, and reproductive physiology.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how microgravity and galactic cosmic rays (GCRs) influence behavioral performance and metabolic pathways in male Fischer rats, highlighting a gap in previous research regarding control conditions for hindlimb unloading (HU).
  • Male rats were subjected to total body irradiation and HU conditions, with plasma and brain tissue analyzed after 6 months to assess long-term metabolic changes.
  • Results showed significant interactions between radiation and HU, with various metabolic pathways affected in the plasma and brain, indicating complex interactions between stressors that could impact spaceflight crew health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!