The Hamilton Receptor in Supramolecular Polymer Sciences.

Top Curr Chem (Cham)

Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India.

Published: July 2024

Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host-guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor's future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s41061-024-00471-yDOI Listing

Publication Analysis

Top Keywords

supramolecular polymers
8
future prospects
8
potential applications
8
supramolecular chemistry
8
hamilton receptors
8
hamilton-type receptors
8
supramolecular
5
hamilton
4
hamilton receptor
4
receptor supramolecular
4

Similar Publications

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!