A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software. | LitMetric

Background: Computer-aided detection (CAD) can help identify people with active tuberculosis left undetected. However, few studies have compared the performance of commercially available CAD products for screening in high tuberculosis and high HIV settings, and there is poor understanding of threshold selection across products in different populations. We aimed to compare CAD products' performance, with further analyses on subgroup performance and threshold selection.

Methods: We evaluated 12 CAD products on a case-control sample of participants from a South African tuberculosis prevalence survey. Only those with microbiological test results were eligible. The primary outcome was comparing products' accuracy using the area under the receiver operating characteristic curve (AUC) against microbiological evidence. Threshold analyses were performed based on pre-defined criteria and across all thresholds. We conducted subgroup analyses including age, gender, HIV status, previous tuberculosis history, symptoms presence, and current smoking status.

Findings: Of the 774 people included, 516 were bacteriologically negative and 258 were bacteriologically positive. Diverse accuracy was noted: Lunit and Nexus had AUCs near 0·9, followed by qXR, JF CXR-2, InferRead, Xvision, and ChestEye (AUCs 0·8-0·9). XrayAME, RADIFY, and TiSepX-TB had AUC under 0·8. Thresholds varied notably across these products and different versions of the same products. Certain products (Lunit, Nexus, JF CXR-2, and qXR) maintained high sensitivity (>90%) across a wide threshold range while reducing the number of individuals requiring confirmatory diagnostic testing. All products generally performed worst in older individuals, people with previous tuberculosis, and people with HIV. Variations in thresholds, sensitivity, and specificity existed across groups and settings.

Interpretation: Several previously unevaluated products performed similarly to those evaluated by WHO. Thresholds differed across products and demographic subgroups. The rapid emergence of products and versions necessitates a global strategy to validate new versions and software to support CAD product and threshold selections.

Funding: Government of Canada.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339183PMC
http://dx.doi.org/10.1016/S2589-7500(24)00118-3DOI Listing

Publication Analysis

Top Keywords

products
10
computer-aided detection
8
tuberculosis prevalence
8
prevalence survey
8
cad products
8
previous tuberculosis
8
lunit nexus
8
products versions
8
tuberculosis
7
cad
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!