The chemical reduction of organic or inorganic water contaminants is very important for both human health and pollution control. However, challenges still persist in preparing catalysts for chemical reduction, and there is a need for the development of inexpensive, easily synthesized, and effective catalyst systems. In this study, we have synthesized a new palladium nanocatalyst supported on the composite hydrogel beads composed of sodium carboxymethyl cellulose (Na-CMC) and graphitic carbon nitride (g-CN). The Pd@Na-CMC/g-CN composite was fully characterized using FE-SEM, XRD, BET, EDS, TEM, and EDS mapping analysis, confirming its successful preparation at the nano-scale. Pd@Na-CMC/g-CN was utilized to reduce various nitroaromatics such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPDA), and organic dyes including methylene blue (MB), methyl orange (MO), Rhodamine B (RhB), as well as potassium hexacyanoferrate(III) (K[Fe(CN)]), which is the inorganic contaminant. While Pd@Na-CMC/g-CN completely reduced nitroaromatics within 65-120 s at 1 × 10 M concentration, organic dyes within 0-60 s at 1 × 10 M concentration, and K[Fe(CN)] within 90 s at 0.002 M concentration in water at room temperature. Rate constant values (k) of 4-NP, 2-NA, 4-NA, 4-NPDA, MO, RhB, and K[Fe(CN)] were calculated to be 0.0085 s, 0.012 s, 0.016 s, 0.01 s, 0.013 s, 0.021 s, and 0.015 s, respectively. Additionally, the Pd@Na-CMC/g-CN displayed high stability and even after four consecutive runs, it was able to reduce 4-NP and MO without any significant loss in its performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134001 | DOI Listing |
ACS Nano
January 2025
Université Toulouse III Paul Sabatier, CIRIMAT, UMR-CNRS 5085, Toulouse Cedex 9 31062, France.
The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, NaV(PO)F (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFPharmaceutics
November 2024
Henan Provincial People's Hospital, Zhengzhou 450003, China.
: Phyllanthus emblica is a medicinal and edible plant from the Euphorbiaceae family, notable for its rich content of polyphenols and flavonoids, which provide significant antioxidant properties. To exploit the full antioxidant potential of Phyllanthus emblica, this study developed a hydrogel system incorporating polyvinyl alcohol (PVA) and carboxymethyl cellulose sodium (CMC-Na), integrated with Phyllanthus emblica extract, for the purpose of wound healing. : The extraction process of active ingredients of Phyllanthus emblica was optimized and assessed the antioxidant composition and activity of the extract.
View Article and Find Full Text PDFSci Rep
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa.
This work investigates the adhesive property of Soy Protein Isolate(SPI)polymer solution by studying mechanical properties of composites formed using waste wood granules and SPI solutions. To improve the adhesive strength of SPI solution, Carboxymethyl Cellulose Sodium(NaCMC)was mixed (in the weight ratios of 9:1 and 8:2) due to its strong gel formation capabilities. The adhesive performance of these composites was further investigated in the presence and absence of non-toxic additives, including sorbitol (SOR) and stearic acid (SA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!