The increased prevalence of diabetes and the growing popularity of non-invasive methods of recombinant human insulin uptake, such as oral insulin, have increased insulin demand, further limiting the affordability of insulin. Over 40 years have passed since the development of engineered microorganisms that replaced the animal pancreas as the primary source of insulin. To stay ahead of the need for insulin in the present and the future, a few drawbacks with the existing expression systems need to be alleviated, including the inclusion body formation, the use of toxic inducers, and high process costs. To address these bottlenecks and improve insulin production, a variety of techniques are being used in bacteria, yeasts, transgenic plants and animals, mammalian cell lines, and cell-free expression systems. Different approaches for the production of insulin, including two-chain, proinsulin or mini-proinsulin, preproinsulin coupled with fusion protein, chaperone, signal peptide, and purification tags, are explored in upstream, whereas downstream processing takes into account the recovery of intact protein in its bioactive form and purity. This article focuses on the strategies used in the upstream and downstream phases of the bioprocess to produce recombinant human insulin. This review also covers a range of analytical methods and tools employed in investigating the genuity of recombinant human insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133951 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!