Maternal administration of APAP induces angiogenesis disorders in mouse placenta via SOCS3/JAK1/STAT3 pathway.

Reprod Toxicol

College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Published: October 2024

AI Article Synopsis

  • * High doses of APAP (150 mg/kg/d) in pregnant mice led to low birth weight and disrupted vascular structures in the placenta, indicating its negative impact on placental angiogenesis.
  • * The study found that APAP affects the signaling pathways in endothelial cells, specifically by increasing Suppressor of Cytokine Signaling 3 (SOCS3) levels, which disrupts crucial cellular functions needed for proper vessel formation.

Article Abstract

Acetaminophen (APAP, also known as paracetamol) is a commonly used antipyretic and analgesic that is considered safe to use during pregnancy. However, a growing body of research indicates that gestational administration of APAP increased the risk of neurodevelopmental, reproductive and genitourinary disorders in offspring, alongside impairments in placental development. Notably, over-dosed APAP exhibits direct toxicity to endothelial cells, but there is very limited research investigating the impact of APAP on placental angiogenesis, a gap we aim to address in this study. Pregnant mice were gavaged with APAP (15, 50 and 150 mg/kg/d) from embryonic day 11.5 (E11.5) to E13.5. Administration of 150 mg/kg/d APAP leads to low birth weight (LBW) of the offspring and disordered vascular structures within the labyrinthine (Lab) layer of the placenta. This disruption is accompanied by a significant increase in Suppressor of Cytokine Signaling 3 (SOCS3) level, a negative regulator of the Janus kinase signal transducer 1 and activator of the transcription 3 (JAK1/STAT3) signaling. Meanwhile, Human umbilical vein endothelial Cells (HUVECs) with the treatment of 3 mM APAP exhibited reduced cell viability, whereas 1 mM APAP significantly affected the proliferation, migration, invasion and angiogenic capacities of HUVECs. Further, SOCS3 was up-regulated in HUVECs, accompanied by inhibition of JAK1/STAT3 pathways. Knocking-down SOCS3 in HUVECs restored the nuclear translocation of STAT3 and efficiently promoted cellular capacity of tube formation. Overall, short-term maternal administration of overdosed APAP impairs angiogenic capacities of fetal endothelial cells via SOCS3/JAK1/STAT3 pathway in the mouse placenta. This study reveals that overdose of APAP during pregnancy may adversely affect placental angiogenesis, emphasizing the importance of adhering to the safe principles of smallest effective dose for the shortest required durations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2024.108668DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
apap
11
maternal administration
8
administration apap
8
mouse placenta
8
socs3/jak1/stat3 pathway
8
placental angiogenesis
8
angiogenic capacities
8
apap induces
4
induces angiogenesis
4

Similar Publications

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.

View Article and Find Full Text PDF

Background: As a novel blocker of vascular endothelial growth factor receptor (VEGFR), fruquintinib has been approved for treating colorectal cancer (CRC). However, its dosage and therapeutic efficacy are limited by its widespread adverse reactions. Venetoclax, recognized as the initial inhibitor of B-cell lymphoma protein 2 (BCL2), has shown potential in boosting the effectiveness of immunotherapy against CRC.

View Article and Find Full Text PDF

Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.

View Article and Find Full Text PDF

Disseminated tumor cells in bone marrow as predictive classifiers for small cell lung cancer patients.

J Natl Cancer Cent

December 2024

Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Aneuploid CD31 disseminated tumor cells (DTCs) and CD31 disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical significance of DTCs and DTECs in SCLC remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!