A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Up-regulation of BMAL1 by epigallocatechin-3-gallate improves neurological damage in SBI rats. | LitMetric

Brain Muscle ARNT-Like Protein 1 (BMAL1) suppresses oxidative stress in brain injury during surgery. Epigallocatechin-3-gallate (EGCG), a monomer in green tea, has been identified as an antioxidant and a potential agonist for BMAL1. In this work, the mechanism by which BMAL1 is regulated was investigated, as well as the therapeutic effect of EGCG on surgically injured rats. The pathological environment after brain injury during surgery was simulated by excising the right frontal lobe of rats. Rats received an intraperitoneal injection of EGCG immediately after surgery. Neurological scores and cerebral edema were recorded after surgery. Fluoro-Jade C staining, TUNEL staining, western blot, and lipid peroxidation analyses were conducted 3 days later. Here we show that the endogenous BMAL1 level decreased after brain injury. Postoperative administration of EGCG up-regulated the content of BMAL1 around the cerebral cortex, reduced the oxidative stress level, reduced neuronal apoptosis and the number of degenerated neurons, alleviated cerebral edema, and improved neurological scores in rats. This suggests that BMAL1 is an effective target for treating surgical brain injury, as well as that EGCG may be a promising agent for alleviating postoperative brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2024.111033DOI Listing

Publication Analysis

Top Keywords

brain injury
20
oxidative stress
8
injury surgery
8
neurological scores
8
cerebral edema
8
brain
6
bmal1
6
rats
5
injury
5
egcg
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!