MOF-derived high-density carbon nanotubes "tentacle" with boosting electrocatalytic activity for detecting ascorbic acid.

Talanta

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China. Electronic address:

Published: November 2024

Accurate detection of ascorbic acid (AA) plays a significant role in food and human physiological processes. Herein, a three-dimensional flexible leaf-like nitrogen-doped hierarchical carbon nanoarrays with high-density carbon nanotube "tentacle" architecture (NC/CNT-Co), which possesses high specific surface area, plenty of active defect sites, and various pore size distributions, was synthesized by the pyrolysis of zeolitic imidazolate framework (ZIF(Co)), while g-CN acted as carbon source and heteroatom doping agent. Benefiting from its unique structure and surface properties, a selective and highly sensitive AA sensor was developed using this material. Compared to powder materials, NC/CNT-Co modified CF (CF@NC/CNT-Co) which don't be extra decorated, exhibits lower detection limit (1 μM), a wider linear range (20-1400 μM), and better stability, showing higher performance in electrocatalysis and detection of AA. Furthermore, CF@NC/CNT-Co also demonstrates high resistance to interference and fouling in AA detection. Particularly, the prepared CF@NC/CNT-Co electrode could determine AA in beverage samples with a recovery rate of 96.3-103.5 %. Therefore, the three-dimensional NC/CNT-Co hierarchical structure can be provided as an original electrode nanomaterial suitable for the selective and sensitive detection of AA, with a wide range of practical applications from food analysis to the pharmaceutical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126578DOI Listing

Publication Analysis

Top Keywords

high-density carbon
8
ascorbic acid
8
detection
5
mof-derived high-density
4
carbon
4
carbon nanotubes
4
nanotubes "tentacle"
4
"tentacle" boosting
4
boosting electrocatalytic
4
electrocatalytic activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!