Natural defence mechanisms of electrochemically active biofilms: From the perspective of microbial adaptation, survival strategies and antibiotic resistance.

Water Res

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China. Electronic address:

Published: September 2024

AI Article Synopsis

  • * EABs can quickly adapt to low tetracycline concentrations (≤ 5 μM), but higher concentrations (≥ 10 μM) hinder their bioelectrocatalytic activity and metabolic functions, affecting their structure and microbial community.
  • * Under chronic tetracycline stress, certain bacteria, like Geobacter anodireducens, become more abundant and demonstrate greater tolerance, indicating specific survival strategies, such as antibiotic efflux and enhanced protein secretion.

Article Abstract

Electrochemically active biofilms (EABs) play an ever-growingly critical role in the biological treatment of wastewater due to its low carbon footprint and sustainability. However, how the multispecies biofilms adapt, survive and become tolerant under acute and chronic toxicity such as antibiotic stress still remains well un-recognized. Here, the stress responses of EABs to tetracycline concentrations (C) and different operation schemes were comprehensively investigated. Results show that EABs can quickly adapt (start-up time is barely affected) to low C (≤ 5 μM) exposure while the adaptation time of EABs increases and the bioelectrocatalytic activity decreases at C ≥ 10 μM. EABs exhibit a good resilience and high anti-shocking capacity under chronic and acute TC stress, respectively. But chronic effects negatively affect the metabolic activity and extracellular electron transfer, and simultaneously change the spatial morphology and microbial community structure of EABs. Particularly, the typical exoelectrogens Geobacter anodireducens can be selectively enriched under chronic TC stress with relative abundance increasing from 45.11% to 85.96%, showing stronger TC tolerance than methanogens. This may be attributed to the effective survival strategies of EABs in response to TC stress, including antibiotic efflux regulated by tet(C) at the molecular level and the secretion of more extracellular proteins in the macro scale, as the C=O bond in amide I of aromatic amino acids plays a critical role in alleviating the damage of TC to cells. Overall, this study highlights the versatile defences of EABs in terms of microbial adaptation, survival strategies, and antibiotic resistance, and deepens the understanding of microbial communities' evolution of EABs in response to acute and chronic TC stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122104DOI Listing

Publication Analysis

Top Keywords

survival strategies
12
eabs
9
electrochemically active
8
active biofilms
8
microbial adaptation
8
adaptation survival
8
strategies antibiotic
8
antibiotic resistance
8
critical role
8
acute chronic
8

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Objective: This study focuses on epidermal growth factor receptor-mutated lung adenocarcinoma, known for frequent brain metastasis. It aimed to compare the clinical outcomes and cost-effectiveness of combining Gamma Knife radiosurgery (GKRS) with tyrosine kinase inhibitors (TKIs) (GKRS+TKI group) versus TKIs alone (TKI group) for the treatment of patients with newly diagnosed brain metastasis in this condition.

Methods: Study characteristics of the two groups were matched using inverse probability of treatment weighting (IPTW).

View Article and Find Full Text PDF

Bridging thrombolysis versus direct endovascular treatment in acute vertebrobasilar artery complex occlusion.

J Neurosurg

January 2025

1Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui.

Objective: Endovascular treatment (EVT) is an effective treatment for patients with acute vertebrobasilar artery complex occlusion (VBAO). However, the benefit of bridging thrombolysis prior to EVT remains controversial. The purpose of the present study is to explore the best treatment strategy between bridging treatment (BT) and direct EVT in patients with acute VBAO.

View Article and Find Full Text PDF

Objectives: This study introduces Smart Imitator (SI), a 2-phase reinforcement learning (RL) solution enhancing personalized treatment policies in healthcare, addressing challenges from imperfect clinician data and complex environments.

Materials And Methods: Smart Imitator's first phase uses adversarial cooperative imitation learning with a novel sample selection schema to categorize clinician policies from optimal to nonoptimal. The second phase creates a parameterized reward function to guide the learning of superior treatment policies through RL.

View Article and Find Full Text PDF

Measuring social, economic, policy, and health system determinants of maternal health and survival: An urgent global priority.

PLoS One

January 2025

Women and Health Initiative, Department of Global Health and Population, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.

In 2015, the World Health Organization (WHO) released global targets and strategies for reducing maternal mortality in the Sustainable Development Goal (SDG) period developed through broad stakeholder consultations. The targets and strategies identified in the "Strategies toward Ending Preventable Maternal Mortality (EPMM)" report are grounded in a systemic and human rights approach to maternal health and aim to address the broad spectrum of key social, political, economic, and health system determinants of maternal health and survival, as exemplified by 11 Key Themes. These upstream determinants of maternal survival are not well represented in maternal health measurement efforts, which tend to focus on service delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!