A multifunctional sensor for detecting tetracycline, 4-nitrophenol, and pesticides.

Spectrochim Acta A Mol Biomol Spectrosc

Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.

Published: December 2024

In recent years, due to the abuse of antibiotics, nitro explosives and pesticides, which have caused great harm to the environment and human health, social concerns have prompted researchers to develop more sensitive detection platforms for these pollutants. In this paper, a novel two-dimensional Zn (II) coordination polymer, [Zn(L)(1,2-bimb)]·DMF (1), [HL=[1,1':4',1''-terphenyl]-2, 2'',4, 4'' -tetracarboxylic acid, 1,2-bimb = 1,2-bis(imidazol-1-ylmethyl)benzene] was synthesized using a hydro-solvothermal method. Among commonly used organic solvents, 1 exhibits significant stability. Fast and efficient fluorescence response can be achieved for tetracycline (TET), 4-nitrophenol (4-NP), fluazinam (FLU), and abamectin benzoate (AMB) with low detection limits. A binary intelligent logic gate device with FLU and AMB as chemical input signals is successfully constructed, which provides a new idea for biochemical detection. In addition, a portable visual test paper has been prepared, which has high sensitivity, good selectivity, and simple operation. It can be used for rapid detection of pollutants in daily life and has broad application prospects. Finally, a detailed discussion was conducted on the fluorescence sensing mechanism of 1 for detecting TET, 4-NP, AMB and FLU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124842DOI Listing

Publication Analysis

Top Keywords

multifunctional sensor
4
sensor detecting
4
detecting tetracycline
4
tetracycline 4-nitrophenol
4
4-nitrophenol pesticides
4
pesticides years
4
years abuse
4
abuse antibiotics
4
antibiotics nitro
4
nitro explosives
4

Similar Publications

TiCT MXene nanoribbons@MnO: A novel multifunctional probe for colorimetric and fluorescence dual-response sensing of trichlorfon.

Talanta

December 2024

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China. Electronic address:

Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.

View Article and Find Full Text PDF

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

Ultraflexible Sensor Development via 4D Printing: Enhanced Sensitivity to Strain, Temperature, and Magnetic Fields.

Adv Sci (Weinh)

December 2024

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

This paper addresses the trade-off between sensitivity and sensing range in strain sensors, while introducing additional functionalities through an innovative 4D printing approach. The resulting ultraflexible sensor integrates carbon nanotubes/liquid metal hybrids and iron powders within an Ecoflex matrix. The optimization of this composition enables the creation of an uncured resin ideal for Direct Ink Writing (DIW) and a cured sensor with exceptional electromechanical, thermal, and magnetic performance.

View Article and Find Full Text PDF

The roadmap of two-dimensional materials toward next-generation image sensor.

Natl Sci Rev

December 2024

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, China.

This Prospective highlights the advances and challenges of 2D materials regarding the materials preparation, device integration, multifunctional applications, and comments on their potential as transformative candidates for future image sensors.

View Article and Find Full Text PDF

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!