Vapor-Tailored Nanojunctions in Ultraporous ZnO Nanoparticle Networks for Superior UV Photodetection.

Small

NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia.

Published: November 2024

AI Article Synopsis

  • * A new low-temperature, solvent vapor-based method enables the rapid creation of these high-quality nanojunctions, making the process fast, cheap, and scalable, capable of forming interparticle interfaces in just minutes.
  • * This technique dramatically boosts the performance of ultraporous ZnO UV photodetectors, achieving a 128,000-fold increase in responsivity compared to untreated structures, while also being highly effective for wearable UV sensors.

Article Abstract

High quality nanojunctions are known to effectively improve the conductivity and structural robustness of ultraporous nanoparticle networks, surpassing the performance of natural van der Waals interfaces. Nevertheless, the traditional approach of forming these junctions by thermal annealing is incompatible with thermolabile polymers and slender metal electrodes found in modern wearable technologies. Herein, we present a low temperature, solvent vapor-based method to rapidly elicit high-quality metal-oxide nanojunctions in a fast, effortless, inexpensive, and easily scalable process; capable of generating necked interparticle interfaces in a matter of minutes. When applied to ultraporous-based ZnO Ultraviolet (UV) photodetectors, the vapor-tailoring process produces an incredible 128,000-fold improvement in responsivity (6.6 A.W) over untreated structures (51.2 µA.W), and a 5300-fold improvement in responsivity over thermally annealed structures; all while maintaining exceptionally low dark currents of 140 pA at a low bias voltage of 1 V. Most importantly, the exceptional performance enabled by room temperature synthesis suggests high potential adaptability of this process toward wearable UV sensors, shedding lights on the strategy of modifying weakly bonded porous nanostructures for improved physical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402558DOI Listing

Publication Analysis

Top Keywords

nanoparticle networks
8
improvement responsivity
8
vapor-tailored nanojunctions
4
nanojunctions ultraporous
4
ultraporous zno
4
zno nanoparticle
4
networks superior
4
superior photodetection
4
photodetection high
4
high quality
4

Similar Publications

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!