Unveiling the Twisted Aromatic Donor Effect on the Nonlinear Response of D-π-A Type Malononitrile-Derived Chromophores.

Chemistry

Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Published: September 2024

This study presents the design, synthesis, and comprehensive characterization of a novel series of D-π-A type malononitrile-derived chromophores, BTC-1-BTC-4. Combining various spectroscopic techniques, nonlinear Z-scan measurements, and quantum chemical calculations, we revealed the intricate relationship between nonlinear optical properties and the interplay of molecular structure, intramolecular charge transfer (ICT), and dipole moments (μ). Our experimental and computational findings corroborate that the polarization degree in the ground state, the charge separation in the excited state and twisted intramolecular charge transfer (TICT) collectively dictate the nonlinear optical properties of the compounds. Notably, BTC-1 exhibits an exceptional nonlinear absorption coefficient β value (2×10 m W), attributed to its optimized charge transfer efficiency and pronounced degree of charge separation. Our findings provide actionable insights for the rational design of high-performance organic Nonlinear optics (NLO) materials with potential applications in advanced photonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202402023DOI Listing

Publication Analysis

Top Keywords

charge transfer
12
d-π-a type
8
type malononitrile-derived
8
malononitrile-derived chromophores
8
nonlinear optical
8
optical properties
8
intramolecular charge
8
charge separation
8
nonlinear
6
charge
5

Similar Publications

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

Photochem Photobiol Sci

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.

View Article and Find Full Text PDF

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

December 2024

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!