Neural oscillations are electrophysiological indicators of synchronous neuronal activity in the brain. Recent work suggests aberrant patterns of neuronal activity in patients with poststroke aphasia. Yet, there is a lack of systematic explorations of neural oscillations in poststroke aphasia. Investigating changes in the dynamics of neuronal activity after stroke may be helpful to identify neural markers of aphasia and language recovery and increase the current understanding of successful language rehabilitation. This review summarizes research on neural oscillations in poststroke aphasia and evaluates their potential as biomarkers for specific linguistic processes. We searched the literature through PubMed, Web of Science, and EBSCO, and selected 31 studies that met the inclusion criteria. Our analyses focused on neural oscillation activity in each frequency band, brain connectivity, and therapy-induced changes during language recovery. Our review highlights potential neurophysiological markers; however, the literature remains confounded, casting doubt on the reliability of these findings. Future research must address these confounds to confirm the robustness of cross-study findings on neural oscillations in poststroke aphasia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/psyp.14655 | DOI Listing |
Lang Cogn Neurosci
July 2024
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA.
The engagement of predictive mechanisms during language comprehension can facilitate processing and modulate neural oscillatory activity. These modulations include alpha-band activity decreases prior to expected words, reflecting anticipatory preparation, and frontal theta-band activity following unexpected words, reflecting engagement of cognitive control. It remains unknown how these oscillatory dynamics are impacted by aging.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.
View Article and Find Full Text PDFFront Neurosci
January 2025
School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Front Aging Neurosci
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States.
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample ( = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!