A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MW-19, a dihydropyrazole derivative, induces human triple-negative breast cancer cell apoptosis by targeting apoptosis-related pathways. | LitMetric

Previous studies have indicated that heterocyclic substituted dihydropyrazole derivatives, particularly MW-19, potentially exert anticancer activity in vitro; however, the underlying mechanism remains unknown. The present study was designed to investigate the mechanisms underlying MW-19 activity in triple-negative breast cancer cells. A sulforhodamine B assay was performed to evaluate cell proliferation inhibition rates, and the antitumor effect of MW-19 was evaluated in mice with HCC-1806 xenografts. Apoptosis was analyzed by Hoechst 33342 and annexin V/propidium iodide staining. Expression of pro- and antiapoptotic proteins and mRNA were analyzed by western blotting and reverse transcription-quantitative (RT-q) PCR, respectively. We found that MW-19 significantly inhibited HCC-1806 cell proliferation in a dose- and time-dependent manner, and significantly inhibited MDA-MB-231 cell migration. Importantly, oral administration of MW-19 significantly inhibited HCC-1806 tumor growth in BALB/c-nu/nu mice. Moreover, MW-19 treatment induced marked apoptosis and G2/M arrest in the sensitive cell line, HCC-1806. RT-qPCR analysis showed that levels of proapoptotic genes (Bax, caspase-3, caspase-7, and Fas) were considerably increased in the MW-19 group relative to the control group, while those of antiapoptotic factors (Bcl-2, C-MYC) were dramatically decreased. Consistently, Bax, caspase-3, and caspase-7 were significantly induced after MW-19 treatment, while levels of phosphorylated (p-)AKT, p-PI3K, p-ERK, and the antiapoptotic protein, Bcl-2, were clearly diminished, and the P38 MAPK signaling pathway was activated. Furthermore, P38 pharmacological inhibitors abrogated MW-19-induced apoptosis. Together, our findings indicate that MW-19 exerts antitumor effects by targeting PI3K/AKT and ERK/P38 signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14589DOI Listing

Publication Analysis

Top Keywords

mw-19
10
triple-negative breast
8
breast cancer
8
cell proliferation
8
mw-19 inhibited
8
inhibited hcc-1806
8
mw-19 treatment
8
bax caspase-3
8
caspase-3 caspase-7
8
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!