Catalytic methane (CH) combustion is a promising approach to reducing the release of unburned methane in exhaust gas. Here, we report Co-exchanged β zeolite (Coβ) as an efficient catalyst for CH combustion using O. A series of ion-exchanged β zeolites (Co, Ni, Mn, Fe, and Pd) are subjected to the catalytic test, and Coβ exhibits a superior performance in a low-temperature region (<100 °C). The results of X-ray absorption spectroscopy (XAS) and catalytic tests for Coβ with different Co loadings indicate the isolated Co species is the plausible active site. The reaction mechanism of CH combustion over the isolated Co cation is theoretically investigated by the single-component artificial force-induced reaction (SC-AFIR) method to thoroughly search for possible reaction routes. The resulting path toward CO formation shows an activation energy of 73 kJ/mol for the rate-determining step and an exothermicity of 1025 kJ/mol, which supports the experimental results. During a long-term catalytic test for 160 h without external heating, the CH conversion gradually decreases from 80 to 40%, but the conversion fully recovers after dehydration at 500 °C (0.5 h). The copresence of HO and CO exhibits a negative impact on the catalytic activity, while NO and SO do not markedly change the catalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c05967 | DOI Listing |
Sci Rep
January 2025
Safety Technology Center of Guizhou Coal Mine Safety Supervision Bureau, Guiyang, 550081, Guizhou, China.
Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.
View Article and Find Full Text PDFSci Rep
December 2024
College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
In order to promote low-carbon sustainable development in the ecological environment and improve the efficiency of hydrogen and natural gas energy utilization, this project carried out research on the explosive effects of different thicknesses of ordered porous media on the hydrogen-methane gas mixture. A detailed discussion was conducted based on the critical quenching hydrogen blending ratio under the thicknesses of 50 mm and 60 mm of ordered porous media. The results indicate that the critical quenching hydrogen blending ratio is 9% for a thickness of 50 mm and 20% for a thickness of 60 mm, indicating that greater thickness enhances flame suppression capabilities.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.
Residual biomass is a promising carbon feedstock for the production of electricity-based organic chemicals and fuels since, unlike carbon dioxide captured from point sources or air, it also has a valuable energy input. Biomass can be converted into an intermediate stream suitable for Power-to-X processes mainly via combustion or gasification. Such combined processes are generally called biohybrid or Power- and Biomass-to-X processes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Low-carbon Thermal Power Generation Technology and Equipment, Harbin, Heilongjiang 150001, China; National innovation Platform for Industry-Education Integration of Energy Storage Technology, Harbin Institute of technology, Harbin, Heilongjiang 150001, China.
J Environ Sci (China)
June 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Two kinds of oxide-zeolite composite support, Ce-beta and Zr-beta were prepared by a simple wet impregnation method and adopted for the preparation of palladium-based catalysts for catalytic oxidation of methane. The Pd/6.8Zr-beta catalyst showed superior methane oxidation performance, achieving T and T of 417 °C and 451 °C, respectively, together with robust hydrothermal stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!