Data Processing for Predicting DNA Damaging Properties of Complex UV Sources.

Chemphyschem

Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES/CREAB, 38000, Grenoble, France.

Published: October 2024

A growing number of experimental evidence emphasizes that photobiological phenomena are not always the sum of the effect of individual wavelengths present in the emission spectrum of light sources. Unfortunately, tools are missing to identify such non-additive effects and predict effects of various exposure conditions. In the present work, we addressed these points for the formation of pyrimidine dimers in DNA upon co-exposure to UVC, UVB and UVA radiation. We first applied a combination index approach to determine whether mixtures of theses UV ranges exhibited additive, inhibitory or synergistic effects on the formation of cyclobutane pyrimidine dimers, (6-4) photoproducts and Dewar valence isomers. A predictive approach based on an experimental design strategy was then used to quantify the contribution of each wavelength range to the formation of DNA photoproducts. The obtained models allowed us to accurately predict the level of pyrimidine dimers in DNA irradiated under different conditions. The data were found to be more accurate than those obtained with the simple additive approach underlying the use of action spectra. Experimental design thus appears as an attractive concept that could be widely applied in photobiology even for cellular experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400549DOI Listing

Publication Analysis

Top Keywords

pyrimidine dimers
12
dimers dna
8
experimental design
8
data processing
4
processing predicting
4
dna
4
predicting dna
4
dna damaging
4
damaging properties
4
properties complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!