A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid model for the classification of Autism Spectrum Disorder using Mu rhythm in EEG. | LitMetric

Background: Autism Spectrum Disorder (ASD) is a condition with social interaction, communication, and behavioral difficulties. Diagnostic methods mostly rely on subjective evaluations and can lack objectivity. In this research Machine learning (ML) and deep learning (DL) techniques are used to enhance ASD classification.

Objective: This study focuses on improving ASD and TD classification accuracy with a minimal number of EEG channels. ML and DL models are used with EEG data, including Mu Rhythm from the Sensory Motor Cortex (SMC) for classification.

Methods: Non-linear features in time and frequency domains are extracted and ML models are applied for classification. The EEG 1D data is transformed into images using Independent Component Analysis-Second Order Blind Identification (ICA-SOBI), Spectrogram, and Continuous Wavelet Transform (CWT).

Results: Stacking Classifier employed with non-linear features yields precision, recall, F1-score, and accuracy rates of 78%, 79%, 78%, and 78% respectively. Including entropy and fuzzy entropy features further improves accuracy to 81.4%. In addition, DL models, employing SOBI, CWT, and spectrogram plots, achieve precision, recall, F1-score, and accuracy of 75%, 75%, 74%, and 75% respectively. The hybrid model, which combined deep learning features from spectrogram and CWT with machine learning, exhibits prominent improvement, attained precision, recall, F1-score, and accuracy of 94%, 94%, 94%, and 94% respectively. Incorporating entropy and fuzzy entropy features further improved the accuracy to 96.9%.

Conclusions: This study underscores the potential of ML and DL techniques in improving the classification of ASD and TD individuals, particularly when utilizing a minimal set of EEG channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613045PMC
http://dx.doi.org/10.3233/THC-240644DOI Listing

Publication Analysis

Top Keywords

precision recall
12
recall f1-score
12
f1-score accuracy
12
94% 94%
12
hybrid model
8
autism spectrum
8
spectrum disorder
8
machine learning
8
deep learning
8
eeg channels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!