Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To investigate the relationship between central venous pressure (CVP) and acute right ventricular (RV) dysfunction in critically ill patients on mechanical ventilation.
Methods: This retrospective study enrolled mechanically ventilated critically ill who underwent transthoracic echocardiographic examination and CVP monitoring. Echocardiographic indices including tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), and tricuspid lateral annular systolic velocity wave (S') were collected to assess RV function. Patients were then classified into three groups based on their RV function and presence of systemic venous congestion as assessed by inferior vena cava diameter (IVCD) and hepatic vein (HV) Doppler: normal RV function (TAPSE ≥ 17 mm, FAC ≥ 35% and S' ≥9.5 cm/sec), isolated RV dysfunction (TAPSE < 17 mm or FAC < 35% or S' <9.5 cm/sec with IVCD ≤ 20 mm or HV S ≥ D), and RV dysfunction with congestion (TAPSE < 17 mm or FAC < 35% or S' <9.5 cm/sec with IVCD > 20 mm and HV S < D).
Results: A total of 518 patients were enrolled in the study, of whom 301 were categorized in normal RV function group, 164 in isolated RV dysfunction group and 53 in RV dysfunction with congestion group. Receiver operating characteristic analysis revealed a good discriminative ability of CVP for identifying patients with RV dysfunction and congestion(AUC 0.839; 95% CI: 0.795-0.883; p < 0.001). The optimal CVP cutoff was 10 mm Hg, with sensitivity of 79.2%, specificity of 69.4%, negative predictive value of 96.7%, and positive predictive value of 22.8%. A large gray zone existed between 9 mm Hg and 12 mm Hg, encompassing 95 patients (18.3%). For identifying all patients with RV dysfunction, CVP demonstrated a lower discriminative ability (AUC 0.616; 95% CI: 0.567-0.665; p < 0.001). Additionally, the gray zone was even larger, ranging from 5 mm Hg to 12 mm Hg, and included 349 patients (67.4%).
Conclusions: CVP may be a helpful indicator of acute RV dysfunction patients with systemic venous congestion in mechanically ventilated critically ill, but its accuracy is limited. A CVP less than10 mm Hg can almost rule out RV dysfunction with congestion. In contrast, CVP should not be used to identify general RV dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264666 | PMC |
http://dx.doi.org/10.1186/s13613-024-01352-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!