The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05442-2DOI Listing

Publication Analysis

Top Keywords

adenine clusters
8
ims-ms offers
8
sulfate ions
8
clusters
5
nucleation
5
rise fall
4
fall adenine
4
clusters gas
4
gas phase
4
phase glimpse
4

Similar Publications

The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.

View Article and Find Full Text PDF

Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments.

View Article and Find Full Text PDF

Huntington's disease is a genetic disorder characterized by progressive neuronal cell damage in some areas of the brain; symptoms are commonly associated with chorea, rigidity and dystonia. The symptoms in Huntington's Disease are caused by a pathological increase in the number of Cytokine-Adenine-Guanine (CAG) repeats on the first exon of the Huntingtin gene, which causes a protein to have an excessive number of glutamine residues; this alteration leads to a change in the protein's conformation and function. Therefore, the purpose of this work was to design, synthesize and evaluate an antisense oligonucleotide (ASO; 95 nucleotides) HTT 90-5 directed to the Huntingtin CAG repeats in primary leukocyte culture cells from a patient with Huntington's Disease; approximately 500,000 leukocytes per well extracted from venous blood were used, to which 100 pMol of ASO were administered, and the expression of Huntingtin was subsequently evaluated at 72 h by RT-PCR.

View Article and Find Full Text PDF

Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.

View Article and Find Full Text PDF

The highly active natural product yatakemycin (YTM) from sp. TP-A0356 is a potent DNA damaging agent with antimicrobial and antitumor properties. The YTM biosynthesis gene cluster () contains several toxin self-resistance genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!