In the contemporary landscape, the reuse of wastewater holds paramount significance. Concurrently, wastewater carries an array of pollutants encompassing chemical dyes and heavy metals. This study delves into the potential of Tamarix aphylla (TA) and Eucalyptus camaldulensis (EC) species for mitigating heavy metals in soil and eliminating methylene blue dye (MB) from wastewater. The research begins with assessing the dye adsorption process, considering pivotal factors such as initial pH, adsorbent dosage, initial dye concentration, and contact time. Outcomes reveal EC's superiority in dye removal compared to TA. As a bioremediation agent, EC exhibits a 90.46% removal efficacy for MB within 15 min, with pH 7.0 as the operative condition. Equilibrium analysis employs Temkin (T), Freundlich (F), and Langmuir (L) isotherms, revealing an excellent fit with the L isotherm model. The study delves further by probing surface adsorption kinetics through pseudo-first-order (PFO) and pseudo-second-order (PSO) models. Furthermore, to discern the divergent impacts of EC and TA on soil heavy metal reduction, soil samples were collected from three distinct zones: an untouched control area, alongside areas where EC and TA were cultivated at the Yazd wastewater site in Iran. Heavy metal levels in the soil were meticulously assessed through rigorous measurement and statistical scrutiny. The findings spotlight TA-cultivated soil as having the highest levels across all examined factors. Ultimately, EC emerges as the superior contender, proficiently excelling in both MB eliminations from wastewater and heavy metal amelioration in the soil, positioning it as the preferred phytoremediation agent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-12903-9DOI Listing

Publication Analysis

Top Keywords

heavy metal
16
eucalyptus camaldulensis
8
tamarix aphylla
8
methylene blue
8
wastewater heavy
8
heavy metals
8
study delves
8
soil
7
wastewater
6
heavy
6

Similar Publications

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

Background: Environmental metal exposure has been implicated in the development of digestive tract cancers, although the specific associations remain poorly defined. This study aimed to investigate the relationship between blood metal levels and the risk of digestive tract cancers among U.S.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

Obesity and iron deficiency (ID) are widespread health issues, with subclinical inflammation in obesity potentially contributing to ID through unclear mechanisms. The aim of the present work was to elucidate how obesity-associated inflammation disturb iron metabolism and to investigate the effect of intravenous (IV) iron supplementation on absolute iron deficient pre-obese (BMI 25.0-29.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!