Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00601DOI Listing

Publication Analysis

Top Keywords

passive wireless
8
porous biopolymer
8
fatty acid
8
directly foods
8
wireless porous
4
biopolymer
4
biopolymer sensors
4
sensors at-home
4
at-home monitoring
4
oil
4

Similar Publications

Implantable Passive Sensors for Biomedical Applications.

Sensors (Basel)

December 2024

School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece.

In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant).

View Article and Find Full Text PDF

Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.

View Article and Find Full Text PDF

Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces a wireless passive ultrasonic thickness measurement technique based on a pulse compression algorithm. The research methodology encompassed the development of mathematical and circuit models for single coil and wireless energy transmission, the proposal of a three-terminal wireless energy mutual coupling system, and the establishment of a finite element model simulating the ultrasonic body wave thickness measurement and wireless energy transmission system.

View Article and Find Full Text PDF

This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set.

View Article and Find Full Text PDF

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!