Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human.

J Bioinform Comput Biol

Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, P. R. China.

Published: June 2024

Drugs often target specific metabolic pathways to produce a therapeutic effect. However, these pathways are complex and interconnected, making it challenging to predict a drug's potential effects on an organism's overall metabolism. The mapping of drugs with targeting metabolic pathways in the organisms can provide a more complete understanding of the metabolic effects of a drug and help to identify potential drug-drug interactions. In this study, we proposed a machine learning hybrid model Graph Transformer Integrated Encoder (GTIE-RT) for mapping drugs to target metabolic pathways in human. The proposed model is a composite of a Graph Convolution Network (GCN) and transformer encoder for graph embedding and attention mechanism. The output of the transformer encoder is then fed into the Extremely Randomized Trees Classifier to predict target metabolic pathways. The evaluation of the GTIE-RT on drugs dataset demonstrates excellent performance metrics, including accuracy (>95%), recall (>92%), precision (>93%) and F1-score (>92%). Compared to other variants and machine learning methods, GTIE-RT consistently shows more reliable results.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720024500100DOI Listing

Publication Analysis

Top Keywords

metabolic pathways
20
drugs targeting
8
targeting metabolic
8
pathways human
8
drugs target
8
mapping drugs
8
machine learning
8
target metabolic
8
transformer encoder
8
metabolic
6

Similar Publications

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a high incidence that seriously threatens patients' lives and health. However, with the rise and application of new treatments, such as immunotherapy, there are still some restrictions in the treatment and diagnosis of HCC, and the therapeutic effects on patients are not ideal.

Methods: Two single-cell RNA sequencing (scRNA-seq) datasets from HCC patients, encompassing 25,189 cells, were analyzed in the study.

View Article and Find Full Text PDF

Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.

View Article and Find Full Text PDF

MjCyc: Rediscovering the pathway-genome landscape of the first sequenced archaeon, .

iScience

January 2025

Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece.

The genome of () DSM 2661 was the first Archaeal genome to be sequenced in 1996. Subsequent sequence-based annotation cycles led to its first metabolic reconstruction in 2005. Leveraging new experimental results and function assignments, we have now re-annotated creating an updated resource with novel information and testable predictions in a pathway-genome database available at BioCyc.

View Article and Find Full Text PDF

Background: Xueshuantong injection (Lyophilized) (XSTI) is widely used to treat cardiovascular and cerebrovascular diseases. However, anaphylactoid reactions (ARs) are frequently reported as one of its side effects, and the mechanisms of ARs and their relationship with the different immune status are still not well understood.

Purpose: This article aims to examine the sensitizing effect of XSTI, explore the impact of normal and immunocompromised states on ARs, and analyze AR-related metabolic pathways by metabolomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!