Background: The relationship between hip strength deficiency in various planes and musculoskeletal injuries within the movement system has been well-established in numerous studies. The present study sought to explore the relationships between hip strength and specific aspects of lower extremity running kinematics.
Methodology: To achieve this objective, the three-dimensional running kinematics of 21 male elite middle-distance runners (mean age: 19.7 ± 1.2 years; mean experience 6.5 ± 1.0 years) were assessed using nine high-speed cameras on a treadmill at a speed of 16 km·h⁻¹. Concurrently, isokinetic hip strength was measured at a speed of 60 deg·s⁻¹ in both the dominant and non-dominant legs. The Pearson correlation coefficient and Paired Samples t-test were utilized.
Results: While no significant differences were found in several isokinetic strength measurements, notable differences in running kinematics were observed. Specifically, pelvic drop at midstance (MS) was significantly lower in the DL (5.79 ± 3.00°) compared to the NDL (8.71 ± 1.39°) with a large effect size (t=-4.04, p < 0.001, Cohen's d = 1.25). Additionally, knee adduction at maximum showed a moderate effect size difference, with the DL at 2.99 ± 1.13° and the NDL at 3.81 ± 1.76° (t=-2.74, p = 0.03, Cohen's d = 0.55). Results indicated a moderate to highly positive association between running knee adduction in the dominant leg and hip external rotation (r = 0.67, p < 0.05), concentric extension (r = 0.77, p < 0.05), and concentric abduction (r = 0.78, p < 0.05). Additionally, the running tibial external rotation angle in the dominant leg exhibited an inverse relationship with all strength measurements, with statistical significance observed only for concentric extension force (r=-0.68, p < 0.05). Furthermore, hip internal rotation force demonstrated a highly inverse correlation with foot pronation in the dominant leg (r=-0.70, p < 0.05) and anterior pelvic tilt in the non-dominant leg (r=-0.76, p < 0.05).
Conclusions: These findings underscore the interrelation between hip strength and running kinematics, particularly on the dominant side. In light of these observations, it is imperative to consider hip strength exercises as integral components for correcting running kinematics. Coaches should also be mindful that kinematic deviations contributing to running injuries may manifest unilaterally or specifically in the dominant leg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264927 | PMC |
http://dx.doi.org/10.1186/s13102-024-00946-x | DOI Listing |
J Appl Biomech
January 2025
School of Health Sciences, Oakland University, Rochester, MI, USA.
Middle-age and older runners demonstrate differences in running biomechanics compared with younger runners. Female runners demonstrate differences in running biomechanics compared with males, and females experience hormonal changes during menopause that may also affect age-related changes in running biomechanics. The purpose of this study was to determine the relationship between age and running biomechanics in healthy female recreational runners.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
The analysis of running gait has conventionally taken place within an expensive and restricted laboratory space, with wearable technology offering a practical, cost-effective, and unobtrusive way to examine running gait in more natural environments. This pilot study presents a wearable inertial measurement unit (IMU) setup for the continuous analysis of running gait during an outdoor parkrun (i.e.
View Article and Find Full Text PDFJ Biomech
January 2025
Graduate Program of Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. Electronic address:
Scand J Med Sci Sports
January 2025
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
Despite the myriad studies examining the diversity and mechanisms of gecko adhesion in the lab, we have a poor understanding of how this translates to locomotion in nature. It has long been assumed that greater adhesive strength should translate to superior performance in nature. Using 13 individuals of Bradfield's Namib day gecko (Rhoptropus bradfieldi) in Namibia, I tested the hypothesis that maximum running performance in nature (speed and acceleration) is driven by maximum frictional adhesive strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!