Anti-inflammatory potential of aconitine produced by endophytic fungus Acremonium alternatum.

World J Microbiol Biotechnol

Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.

Published: July 2024

Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC 11.38 ± 0.35 µg/ml), protein denaturation (IC 14.93 ± 0.4 µg/ml), trypsin inhibition (IC 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, H NMR, and C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-04083-yDOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
produced endophytic
8
acremonium alternatum
8
alkaloidal content
8
anti-inflammatory activity
8
anti-inflammatory
5
anti-inflammatory potential
4
potential aconitine
4
aconitine produced
4
endophytic
4

Similar Publications

Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

A rare glisoprenin analogue from an endophytic fungus sp. F1.

Nat Prod Res

January 2025

Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.

Glisoprenins are unique fungal polyisoprenepolyols with nine isoprene units from spp. Herein, glisoprenin G (), a new member of glisoprenins group, along with a biosynthetically related known analogue glisoprenin F (), were isolated and identified from an endophytic fungus, sp. F1, harboured in the roots of the Chinese medicinal plant .

View Article and Find Full Text PDF

Antimicrobial polyketides from the endophytic fungus Fusarium asiaticum QA-6 derived from medicinal plant Artemisia argyi.

Phytochemistry

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Nanhai Road 7, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, PR China. Electronic address:

Seven previously undescribed polyketide derivatives, fusariumtides A-G (1-7), together with three known analogues (8-10), were isolated from the culture extract of Fusarium asiaticum QA-6, an endophytic fungus obtained from the fresh stem tissue of the medicinal plant Artemisia argyi H. Lev. & Vaniot.

View Article and Find Full Text PDF

Nidustrin A, cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans.

Bioorg Chem

December 2024

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address:

Nidustrin A (1), the first cysteine-retained emestrin featuring a unique sulfur-containing 18-membered macrocyclic lactone, along with four biogenetically related compounds (2-5), and one known analogue secoemestrin C (6), were isolated from the large-scale culture of Aspergillus nidulans, an endophytic fungus derived from the Whitmania pigra. Compounds 2 and 3 represent the second examples of noremestrin besides the previously reported noremestrin A, and the single crystal X-ray diffraction analysis of compound 2 provided solid evidence for the intriguing skeleton of noremestrin. Their structures were determined by extensive spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!