A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineered Chlorella vulgaris improves bioethanol production and promises prebiotic application. | LitMetric

Engineered Chlorella vulgaris improves bioethanol production and promises prebiotic application.

World J Microbiol Biotechnol

Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Published: July 2024

Microalgal biomass for biofuel production, integration into functional food, and feed supplementation has generated substantial interest worldwide due to its high growth rate, non-competitiveness for agronomic land, ease of cultivation in containments, and presence of several bioactive molecules. In this study, genetic engineering tools were employed to develop transgenic lines of freshwater microalga Chlorella vulgaris with a higher starch content, by up-regulating ADP-glucose pyrophosphorylase (AGPase), which is a rate-limiting enzyme in starch biosynthesis. Expression of the Escherichia coli glgC (AGPase homolog) gene in C. vulgaris led to an increase in total carbohydrate content up to 45.1% (dry cell weight, DCW) in the transgenic line as compared to 34.2% (DCW) in the untransformed control. The starch content improved up to 16% (DCW) in the transgenic alga compared to 10% (DCW) in the control. However, the content of total lipid, carotenoid, and chlorophyll decreased differentially in the transgenic lines. The carbohydrate-rich biomass from the transgenic algal line was used to produce bioethanol via yeast fermentation, which resulted in a higher ethanol yield of 82.82 mg/L as compared to 54.41 mg/L from the untransformed control. The in vitro digestibility of the transgenic algal starch revealed a resistant starch content of up to 7% of total starch. Faster growth of four probiotic bacterial species along with a lowering of the pH of the growth medium indicated transgenic alga to exert a positive prebiotic effect. Taken together, the study documents the utilization of genetically engineered C. vulgaris with enriched carbohydrates as bioethanol feedstock and functional food ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-04074-zDOI Listing

Publication Analysis

Top Keywords

starch content
12
chlorella vulgaris
8
functional food
8
transgenic lines
8
dcw transgenic
8
untransformed control
8
transgenic alga
8
content total
8
transgenic algal
8
transgenic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!