A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-purity ethylene production via indirect carbon dioxide electrochemical reduction. | LitMetric

High-purity ethylene production from CO electroreduction (CORR) is a coveted, yet arduous feat because the product stream comprises a blend of unreacted CO, H and other off-target CO reduction products. Here we present an indirect reduction strategy for CO-to-ethylene conversion, one that employs 2-bromoethanol (Br-EO) as a mediator. Br-EO is initially generated from CORR and subsequently undergoes reduction to ethylene without the need for energy-intensive separation steps. The optimized AC-Ag/C catalyst with Cl incorporation reduces the energy barrier of the debromination step during Br-EO reduction, and accelerates the mass-transfer process, delivering a 4-fold decrease of the relaxation time constant. Resultantly, AC-Ag/C achieved a FE of over 95.0 ± 0.36% at a low potential of -0.08 V versus reversible hydrogen electrode (RHE) in an H-type cell with 0.5 M KCl electrolyte, alongside a near 100% selectivity within the range of -0.38 to -0.58 V versus RHE. Through this indirect strategy, the average ethylene purity within 6-hour electrolysis was 98.00 ± 1.45 wt%, at -0.48 V (vs RHE) from the neutralized electrolyte after CO reduction over the Cu/CuO catalyst in a flow-cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271605PMC
http://dx.doi.org/10.1038/s41467-024-50522-7DOI Listing

Publication Analysis

Top Keywords

high-purity ethylene
8
ethylene production
8
reduction
6
production indirect
4
indirect carbon
4
carbon dioxide
4
dioxide electrochemical
4
electrochemical reduction
4
reduction high-purity
4
production electroreduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!