Sci Rep
Department of Process Engineering, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09310, Mexico, DF, Mexico.
Published: July 2024
Monometallic and bimetallic Cu:Ni catalysts with different Cu:Ni molar ratios (3:1, 2:1, 1:1, 1:2, 1:3) were synthesized by wetness impregnation on activated carbon and characterized by TPR (temperature programmed reduction), XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). The synthesized catalysts were evaluated in the gas phase production of diethyl carbonate from ethanol and carbon dioxide. The largest catalytic activity was obtained over the bimetallic catalyst with a Cu:Ni molar ratio of 3:1. Its improved activity was attributed to the formation of a Cu-Ni alloy on the surface of the catalyst, evidenced by XPS and in agreement with a previous assignment based on Vegard law and TPR analysis. During the reaction rate experiments, it observed the presence of a maximum of the reaction rate as a function of temperature, a tendency also reported for other carbon dioxide-alcohol reactions. It showed that the reaction rate-temperature data can be adjusted with a reversible rate equation. The initial rate as a function of reactant partial pressure data was satisfactorily adjusted using the forward power law rate equation and it was found that the reaction rate is first order in CO and second order in ethanol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271531 | PMC |
http://dx.doi.org/10.1038/s41598-024-59070-y | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.
Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.
JMIR Med Inform
January 2025
School of Software, Taiyuan University of Technology, Jingzhong, China.
Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Engineering the local electronic structure of single atom catalysts (SACs) still remains challenging. In this study, a Ru-NiS single atom catalyst with a controlled S coordination environment, where Ru single atoms are implanted on a NiS nanoflower consisting of plenty of cross-linked nanosheets, has been developed a facile atom capture strategy. Using Density Functional Theory (DFT) calculations, it has been revealed that the fine-tuned local S coordination environment can optimize the electronic structure of Ru active sites, and reduce the energy barrier of the rate-determining step for the oxygen evolution reaction (OER), thus boosting the electrocatalytic activity, such as a low overpotential of 269 mV at 10 mA cm.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
The present work employs the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory to investigate the effect of a water monomer (WM) and dimer (WD) on the oxidation of nitrous acid (HONO) by the Criegee intermediate (CHOO). The present work suggests that similar to an uncatalyzed path, a water catalyzed reaction can also proceed two paths, , the oxygen atom transfer (OAT) and the hydrogen atom transfer (HAT) path. In addition, here also, the HAT path dominates over the OAT path.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.