Fabrication of nickel phytate modified bio-based polyol rigid polyurethane foam with enhanced compression-resistant and improved flame-retardant.

Sci Rep

Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang, 110136, China.

Published: July 2024

AI Article Synopsis

  • - A bio-based flame retardant, nickel phytate (PA-Ni), was developed and used with soybean oil-based polyol to create a new type of green polyurethane foam (RPUF) that is strong, thermally stable, and flame resistant.
  • - The optimized formulation (RPUF-SO2/Ni3 with 3 wt% PA-Ni) showed significant improvements in thermal stability and flame retardancy, including a 2.6% increase in limiting oxygen index and reductions in peak heat release rate by 14.92% and total heat release by 19.92%.
  • - The enhanced compressive strength and smoke suppression of the foam were attributed to a combined gas-phase and condensed-phase flame

Article Abstract

A bio-based flame retardant nickel phytate (PA-Ni) was synthesized and combined with soybean oil-based polyol (SO) to create a green rigid polyurethane foam (RPUF) with enhanced compressive strength, good thermal stability and flame retardant. The results showed that the RPUF-SO2/Ni3 with 3 wt% PA-Ni had the highest initial and termination temperature, maximum thermal decomposition rate temperature and carbon residue, and better thermal stability. Its limiting oxygen index was increased by 2.6% compared with RPUF-SO2 without PA-Ni added, and the peak heat release rate (PHRR) and total heat release rate (THR) were reduced by 14.92% and 19.92%, respectively. In addition, RPUF-SO2/Ni3 had the lowest Ds under the conditions of flame (18.90) and flameless (22.41), and had the best smoke suppression effect. And the compressive strength of RPUF-SO/Ni3 was significantly enhanced by the addition of PA-Ni. The results show that the improvement of flame retardancy of RPUF is mainly the result of the combined effect of gas-phase and condensed-phase flame retardancy, among which the flame retardancy of RPUF-SO/Ni3 was the best. The current findings offer a practical way to produce green and low-carbon RPUF as well as promising prospects for the material's safe application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271560PMC
http://dx.doi.org/10.1038/s41598-024-67520-wDOI Listing

Publication Analysis

Top Keywords

flame retardancy
12
nickel phytate
8
rigid polyurethane
8
polyurethane foam
8
flame retardant
8
compressive strength
8
thermal stability
8
heat release
8
release rate
8
flame
6

Similar Publications

Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.

Polymers (Basel)

January 2025

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.

View Article and Find Full Text PDF

An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic × Particles and Their Application in Flame-Retardant Panels.

Polymers (Basel)

January 2025

Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.

Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.

View Article and Find Full Text PDF

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Recent Advances in Paper Conservation Using Nanocellulose and Its Composites.

Molecules

January 2025

Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.

Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.

View Article and Find Full Text PDF

Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!