Synthesis, characterization and evaluation of new alternative ruthenium complex for dye sensitized solar cells.

Sci Rep

Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

Published: July 2024

For first time, new innovative ruthenium N3-Dye anchored with selenium (Se) and N3 dye anchored with sulphur atoms were synthesized in a good yield. Dyes are applied and evaluated in performance of dye sensitized solar cell. N3-Se dye showed superior photochemical& electrochemical behavior and high rate electron transfer across anode surface than N3-S dye. The better optical and electrochemical activities would make Se-dye a candidate for applications in solar cells. Half life time of N3-S showed a single exponential decay with an average lifetime of 0.8 ns. For N3-Se dye, decay curve was fitted by sum two exponential functions with 75% and 25% counts have 2.5 ns and 30 ns respectively. Solar cells were fabricated and analyzed to determine their solar-to-electric conversion efficiency under standard AM 1.5 sunlight. Commercial N3 dyes showed current density (J) of 17.813 mA cm, open circuit potential (V) of 0.678 V, filling factor (FF) of 0.607 and conversion efficiencies (η) of 7.3%. Corresponding values for N3-S dye, Jsc 11.2 mA cm, V 0.650 V, FF 0.681 and η 5%. Se-N3 dye, showed J = 6.670 mA cm, V = 0.6004 V, FF = 0.77 and η = 3.09%. Long lifetime of N3-Se caused low practical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271599PMC
http://dx.doi.org/10.1038/s41598-024-66808-1DOI Listing

Publication Analysis

Top Keywords

solar cells
12
dye
8
dye sensitized
8
sensitized solar
8
n3-se dye
8
n3-s dye
8
synthesis characterization
4
characterization evaluation
4
evaluation alternative
4
alternative ruthenium
4

Similar Publications

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green.

ACS Appl Mater Interfaces

January 2025

Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.

Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.

View Article and Find Full Text PDF

(ZnO) Cluster Decorated 2D Porous CN Materials as Efficient Solar Cells.

J Phys Chem A

January 2025

College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.

Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.

View Article and Find Full Text PDF

Enhancing a Perovskite Solar Cell and Module by Suppressing Protonation through Chelating Agents.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong, China.

Formamidinium-based perovskites (FA perovskites) often incorporate methylammonium chloride (MACl) to stabilize the α-FAPbI phase and prevent formation of the δ phase. However, MACl undergoes deprotonation and reacts with FA, leading to the generation of unstable byproducts that can cause component degradation and negatively impact the device performance. In this study, we introduce ethylenediaminetetramethylenephosphonic acid as a corrosion inhibitor, which effectively prevents the formation of these byproducts and stabilizes α-FAPbI.

View Article and Find Full Text PDF

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!