Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271625PMC
http://dx.doi.org/10.1038/s41467-024-50460-4DOI Listing

Publication Analysis

Top Keywords

chemoselective 12-diheteroarylation
8
visible light-induced
4
light-induced chemoselective
4
12-diheteroarylation alkenes
4
alkenes visible-light
4
visible-light photocatalysis
4
photocatalysis evolved
4
evolved powerful
4
powerful technique
4
technique enable
4

Similar Publications

Sodium salt of aryl sulfinic acid reacts with enynone in a different manner, yielding α-furyl sulfone and stereodefined vinyl sulfone in toluene and EtOH respectively in the presence of ZnCl. The salient features of this protocol include chemoselectivity, broad substrate scope, high efficiency, high yield, and easy purification. The synthetic utilities of the products are demonstrated by cycloaddition and cis-trans photoisomerization reactions.

View Article and Find Full Text PDF

Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization.

View Article and Find Full Text PDF

A Pd (II)-catalyzed direct C3-(sp)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2--alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism.

View Article and Find Full Text PDF

The synthetic utility of tetrabenzyl pyrophosphate for achieving chemoselective phosphorylation of phenols, as well as primary, secondary, and tertiary alcohols, is reported here. Additionally, we introduce a rapid, mild, and chemoselective debenzylation procedure, enabling access to phosphates in the presence of redox sensitive groups. Finally, stoichiometrically controlled monodebenzylation provides a versatile platform for late-stage divergent synthesis of phosphodiester and phosphoramidate chemical libraries.

View Article and Find Full Text PDF

Visible Light-Driven Interrupted Barton Reaction: Intermolecular Radical-Relay Sulfonyloximation of Alkenes with DABSO and Alkyl Nitrites.

Org Lett

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.

A visible light-driven, intermolecular interrupted Barton reaction has been developed for radical-relay sulfonyloximation of alkenes with alkyl nitrites, using DABSO as a trapping reagent. This method overcomes the challenges of competing normal Barton reactions and polarity mismatches by rapidly and irreversibly capturing alkyl radicals, preventing unwanted side reactions. The resulting polarity-reversed sulfonyl radicals undergo highly selective addition to alkenes, yielding α-alkylsulfonyl ketoximes tethered to hydroxyl or ketone groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!