AI Article Synopsis

  • Prefabricated buildings in China face challenges like cost overruns and delays due to poor component selection, prompting a quantitative analysis of how quality optimization can improve outcomes using QFD-SEM methods.
  • A multi-objective optimization method is proposed to balance cost, duration, and carbon emissions in prefabricated component combinations, with the NSGA-II algorithm used to identify optimal solutions.
  • An empirical study of an eleven-story building showed that the optimized prefabricated approach reduced duration and carbon emissions significantly compared to traditional methods, while also indicating correlations between cost, quality, and prefabrication rates.

Article Abstract

As a main carrier mode for the sustainable development of the construction industry in China, prefabricated building may lead to problems such as cost overruns, project delays, and waste of resources due to unreasonable selection of prefabricated components. Therefore, we quantitatively analyze the contribution rate of quality optimization of prefabricated components using QFD-SEM. Under the constraints of prefabrication rate, quality optimization contribution rate, and expected values of various sub-goals, we propose a multi-objective optimization method for prefabricated component combinations based on cost, duration, and carbon emissions. By using NSGA-II to solve the model, we can obtain a set of optimal Pareto solutions for prefabricated component combinations. Based on the optimal Pareto solution set, we establish a multi-objective evaluation model using simulated annealing optimization projection tracing method, and select the optimal prefabricated component combination solution according to the projected eigenvalues of the solutions. An empirical study is conducted using an eleven-story framed building in Shenzhen, Guangdong Province, China as a case study. The results show that: (1) Using this method, optimal solutions can be obtained in an unbounded solution space, with the optimal solution having advantages over both fully cast-in-place and fully prefabricated solutions. Compared to the fully cast-in-place solution, the duration and carbon emissions are reduced by 36.62% and 12.74% respectively, while compared to the fully prefabricated solution, costs are reduced by 4.15%. (2) There is a certain negative correlation between the cost of prefabricated component combinations and duration, carbon emissions, and quality optimization, while there is a certain positive correlation with the prefabrication rate. (3) The size of the optimal projection direction vector based on the optimization objectives indicates that carbon emissions have the greatest impact on the evaluation results of the solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271550PMC
http://dx.doi.org/10.1038/s41598-024-65319-3DOI Listing

Publication Analysis

Top Keywords

prefabricated component
20
carbon emissions
16
quality optimization
12
component combinations
12
duration carbon
12
prefabricated
10
component combination
8
simulated annealing
8
prefabricated components
8
contribution rate
8

Similar Publications

The issues of numerous steel beam components and the tendency for deck cracking under negative bending moment zones have long been challenges faced by traditional composite I-beams with flat steel webs. This study introduces an optimized approach by modifying the structural design and material selection, specifically substituting flat steel webs with corrugated steel webs and using ultra-high-performance concrete for the deck in the negative bending moment zone. Three sets of model tests were conducted to compare and investigate the influence of deck material and web forms on the bending and crack resistance of steel-concrete composite I-beams under a negative bending moment zone.

View Article and Find Full Text PDF

Thermally Conductive Shape-Stabilized Phase Change Materials Enabled by Paraffin Wax and Nanoporous Structural Expanded Graphite.

Nanomaterials (Basel)

January 2025

State Key Laboratory of Nonferrous Metals and Processes, GRIMN Group Co., Ltd., Beijing 100088, China.

Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem.

View Article and Find Full Text PDF

Prefabricated buildings have a series of advantages such as high efficiency, energy savings, and environmental protection, and are being strongly promoted by the Chinese government. However, due to the late start of prefabricated buildings in China, the installation process of prefabricated components is relatively complex, leading to difficulties in quality and safety control. A novel evaluation methodology integrating the technique for order preference by similarity to ideal solution (TOPSIS) with prospect theory and interval-valued Pythagorean fuzzy numbers (IVPFNs) is proposed.

View Article and Find Full Text PDF

This paper presents an experimental study on the elastic support in a discrete rail fastening system used in a ballastless tram track structure. The study focuses on the elastic support of the anchor element, specifically the Pm49 baseplate. These elements significantly influence environmental pollution along tram routes, such as vibration (at low frequencies) or noise (at high frequencies), as well as static and dynamic rail deflections.

View Article and Find Full Text PDF

Research on cost and carbon reduction using the optimization of composite slabs modules based on bim technology.

Sci Rep

December 2024

China 19T'' Metallurgical Group Corporation Limited, 610039, Chengdu, China.

As one of the primary precast components in prefabricated construction, composite slabs have increasingly attracted interest for their costs as well as carbon footprint in production and installation stages. Conventional methods for separating composite slabs can lead to a building project necessitating multiple specifications of composite slabs. Due to the requirement to customize molds for different modulus of composite slabs, the production process experiences a substantial rise in energy consumption and resource waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!