Over the past three decades, studies have indicated a mobile surface layer with steep gradients on glass surfaces. Among various glasses, polymers are unique because intramolecular interactions - combined with chain connectivity - can alter surface dynamics, but their fundamental role has remained elusive. By devising polymer surfaces occupied by chain loops of various penetration depths, combined with surface dissipation experiments and Monte Carlo simulations, we demonstrate that the intramolecular dynamic coupling along surface chains causes the sluggish bulk polymers to suppress the fast surface dynamics. Such effect leads to that accelerated segmental relaxation on polymer glass surfaces markedly slows when the surface polymers extend chain loops deeper into the film interior. The surface mobility suppression due to the intramolecular coupling reduces the magnitude of the reduction in glass transition temperature commonly observed in thin films, enabling new opportunities for tailoring polymer properties at interfaces and under confinement and producing glasses with enhanced thermal stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271542 | PMC |
http://dx.doi.org/10.1038/s41467-024-50398-7 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.
Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
Terpene synthases produce a wide number of hydrocarbon skeletons by controlling intramolecular rearrangements of allylic pyrophosphate subtrates reactive carbocation intermediates. Here we review recent research focused on engineering terpene synthases and modifying their substrates to rationally manipulate terpene catalyisis. Molecular dynamic simulations and solid state X-ray crystallography are powerful techniques to identify substrate binding modes, key active site residues for substrate folding, and the location of active site water.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Covalent adaptable networks (CANs), a novel class of crosslinked polymers with dynamic covalent bonds, have gained significant attention for combining the durability of thermosets with the reprocessability of thermoplastics, making them promising for emerging applications. Here, we report the first example of poly[2]rotaxane-type CANs (PRCANs), in which oligo[2]rotaxane backbones characterized by densely packed mechanical bonds, are cross-linked through dynamic C-N bond. Oligo[2]rotaxane backbones could guarantee the mechanical properties of CANs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
The reaction CH3NC ⇌ CH3CN, a model reaction for the study of unimolecular isomerization, is important in astronomy and atmospheric chemistry and has long been studied by numerous experiments and theories. In this work, we report the first full-dimensional accurate potential energy surface (PES) of this reaction by the permutation invariant polynomial-neural network method based on 30 974 points, whose energies are calculated at the CCSD(T)-F12a/AVTZ level. Then, ring polymer molecular dynamics is used to derive the free energy barrier of the reaction at the experimental temperature range of 472.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!