Ferroelectric polarization and magnetic structure at domain walls in a multiferroic film.

Nat Commun

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.

Published: July 2024

Domain walls affect significantly ferroelectric and magnetic properties of magnetoelectric multiferroics. The stereotype is that the ferroelectric polarization will reduce at the domain walls due to the incomplete shielding of depolarization field or the effects of gradient energy. By combining transmission electron microscopy and first-principles calculations, we demonstrate that the ferroelectric polarization of tail-to-tail 180° domain walls in ε-FeO is regulated by the bound charge density. A huge enhancement (43%) of ferroelectric polarization is observed in the type I domain wall with a low bound charge density, while the ferroelectric polarization is reduced to almost zero at the type II domain wall with a high bound charge density. The magnetic coupling across the type I and type II ferroelectric domain walls are antiferromagnetic and ferromagnetic, respectively. Revealing mechanisms for enhancing ferroelectric polarization and magnetic behaviors at ferroelectric domain walls may promote the fundamental research and potential applications of magnetoelectric multiferroics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271601PMC
http://dx.doi.org/10.1038/s41467-024-50431-9DOI Listing

Publication Analysis

Top Keywords

ferroelectric polarization
24
domain walls
24
bound charge
12
charge density
12
ferroelectric
9
polarization magnetic
8
domain
8
magnetoelectric multiferroics
8
type domain
8
domain wall
8

Similar Publications

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Mechanical force-induced interlayer sliding in interfacial ferroelectrics.

Nat Commun

January 2025

Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China.

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

Enhancing ionic conductivity and expanding the electrochemical window in polymer electrolytes via ferroelectric-metal-organic-frameworks to manipulate charge spatial distribution.

J Colloid Interface Sci

January 2025

National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:

Poly (ethylene oxide) (PEO)-based polymer electrolytes have promising applications in all-solid-state lithium metal batteries. However, their wide range of practical applications is severely limited by their relatively low room temperature lithium ion conductivity and narrow electrochemical window. In this paper, based on the ability of spontaneous polarization of ferroelectric materials to generate polarization field under applied electric field and the characteristics of Metal-Organic-Frameworks (MOFs) materials with regular adjustable pore structure, a Nano material combining ferroelectric materials and MOF (NUS-6(Hf)-MOF) was first proposed to be added to PEO polymer electrolyte as a filler.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!