Electrochemical detection of nitrofurazone using laser-engraved three-electrode graphene array.

Anal Chim Acta

Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:

Published: August 2024

Background: Nitrofurazone (NFZ) is a widely-used antimicrobial agent in aquaculture. The NFZ residue can be transmitted to humans through the food chain, and cause adverse health effects including carcinogenesis and teratogenesis. Until now, a number of modified electrodes have been developed for NFZ detection, however, there are some issues that need to be improved. For example, the reported detection sensitivity is relatively low, the modification procedure is complicated, and conventional three-electrode system is used. Therefore, it is quite important to develop new NFZ detection method with higher sensitivity, simplicity and practicality.

Results: Herein, a kind of integrated three-electrode array consisted with porous graphene is easily prepared through laser engraving of commercial polyimide tape. Five kinds of graphene arrays were prepared at different laser power percentage (i.e. 30 %, 40 %, 50 %, 60 % and 70 %). It is found that their structure, morphology, fluffiness and porosity show great difference, consequently affecting the electrochemical performance of graphene arrays such as conductivity, active area and electron transfer ability. The engraved graphene array at 50 % laser power percentage (LIG-50 array) is superior owing to uniform 3D structure, abundant pores and high stability. More importantly, LIG-50 array is more active for NFZ oxidation, and significantly enhances the detection sensitivity. The linear range of LIG-50 sensor is from 0.2 to 8 μM, and the detection limit is 0.035 μM, which is successfully used in fish meat samples.

Significance: A sensitive, portable and practical electrochemical sensor has been successfully developed for NFZ using laser-engraved graphene array. The demonstration using fish meat samples manifests this new sensor has good accuracy and great potential in application. This study could provide a new possibility for the design and fabrication of other high-performance electrochemical sensor for various applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342898DOI Listing

Publication Analysis

Top Keywords

graphene array
12
developed nfz
8
nfz detection
8
detection sensitivity
8
prepared laser
8
graphene arrays
8
laser power
8
power percentage
8
lig-50 array
8
fish meat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!