A sensitive aptasensor mediated by gold nanoparticles/metal organic framework lattice for detection of Pb ion in marine products.

Anal Chim Acta

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: August 2024

AI Article Synopsis

  • An enzyme-free fluorescent aptasensor was developed for the sensitive detection of lead (Pb) ions, a dangerous pollutant in the environment and food.
  • The aptasensor uses a nanocomposite made of zeolitic imidazolate frameworks-8 and gold nanoparticles to quench the fluorescence of a carboxyfluorescein signal reporter, with a selective binding mechanism that enhances detection.
  • This method accurately measures Pb concentrations from 1 pM to 1 nM, with a very low detection limit of 0.24 pM, and can be used on various samples such as fish, shrimp, tap water, milk, and serum, making it a promising tool for food safety checks.

Article Abstract

Herein, an enzyme-free fluorescent aptasensor was introduced for the ultrasensitive quantification of lead (Pb) ion as a hazardous pollutant of the environment and foodstuffs. A nanocomposite of zeolitic imidazolate frameworks-8 and gold nanoparticles (ZIF-8@AuNPs) was utilized as an efficient quencher of the fluorescence intensity of carboxyfluorescein (FAM) signal reporter. The establishment of a hybrid structure between attached aptamer on ZIF-8@AuNPs nanocomposite, and its FAM-tagged complementary (CP) strand decreased the fluorescence response. The preferential binding between the aptamer and Pb released CP strands, which retrieved the fluorescence signal. The aptasensor could assess Pb in the linear concentration range of 1 pM-1 nM with a detection limit (LOD) of 0.24 pM. Besides, it could quantify Pb in various samples, including fish, shrimp, tap water, milk, and serum samples. The developed aptasensor with the superiorities of easiness, cost-effectiveness, easy-to-operate, and rapidness is promising for controlling marine foodstuff safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342893DOI Listing

Publication Analysis

Top Keywords

sensitive aptasensor
4
aptasensor mediated
4
mediated gold
4
gold nanoparticles/metal
4
nanoparticles/metal organic
4
organic framework
4
framework lattice
4
lattice detection
4
detection ion
4
ion marine
4

Similar Publications

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Dual-mode colorimetric and chemiluminescence aptasensor for organophosphorus pesticides detection using aptamer-regulated peroxidase-like activity of TA-Cu.

Talanta

December 2024

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Street, TEDA, Tianjin, 300457, PR China. Electronic address:

The residues of organophosphorus pesticides (OPs) in food pose a huge threat to human health. Therefore, the development of detection methods with simple design and high sensitivity is urgently needed. Here, a colorimetric/chemiluminescence (CL) dual-mode aptasensor strategy with high selectivity and sensitivity for detecting Parathion-methyl (PM) was designed based on aptamer-regulated nanozyme activity.

View Article and Find Full Text PDF

Visual and fluorescence dual mode platform for sensitive and accurate screening of breast carcinoma.

Biosens Bioelectron

December 2024

TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China. Electronic address:

Compared to single-mode detection, dual-mode sensing strategies have garnered increasing attention from researchers due to their superior detection accuracy and reliability. Exosomes, as non-invasive biomarkers, hold significant potential for disease diagnosis. However, sensitive and precise detection of exosomes still presents considerable technical challenges.

View Article and Find Full Text PDF

CRISPR/HCR-powered ratiometric fluorescence aptasensor for ochratoxin A detection.

Food Chem

December 2024

Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. Electronic address:

To address the need for highly sensitive and reliable detection of trace ochratoxin A (OTA) in food matrices, we developed a ratiometric fluorescent aptasensor by integrating CRISPR/Cas12a, hybridization chain reaction (HCR), and horseradish peroxidase (HRP)-induced inner filter effect (IFE). The mechanism involves OTA releasing an activator that initiates CRISPR/Cas12a trans-cleavage, blocking HCR assembly. This reduces HRP levels, limiting the conversion of o-phenylenediamine (OPD) to fluorescent 2,3-diaminophenazine (DAP) (emitting at 562 nm) while maintaining strong emission from 2-amino terephthalic acid (BDC-NH) at 426 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!