Everything AlphaFold tells us about protein knots.

J Mol Biol

Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland. Electronic address:

Published: October 2024

Recent advances in Machine Learning methods in structural biology opened up new perspectives for protein analysis. Utilizing these methods allows us to go beyond the limitations of empirical research, and take advantage of the vast amount of generated data. We use a complete set of potentially knotted protein models identified in all high-quality predictions from the AlphaFold Database to search for any common trends that describe them. We show that the vast majority of knotted proteins have 3 knot and that the presence of knots is preferred in neither Bacteria, Eukaryota, or Archaea domains. On the contrary, the percentage of knotted proteins in any given proteome is around 0.4%, regardless of the taxonomical group. We also verified that the organism's living conditions do not impact the number of knotted proteins in its proteome, as previously expected. We did not encounter an organism without a single knotted protein. What is more, we found four universally present families of knotted proteins in Bacteria, consisting of SAM synthase, and TrmD, TrmH, and RsmE methyltransferases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2024.168715DOI Listing

Publication Analysis

Top Keywords

knotted proteins
16
knotted protein
8
proteins proteome
8
knotted
6
alphafold tells
4
protein
4
tells protein
4
protein knots
4
knots advances
4
advances machine
4

Similar Publications

Light chain (AL) amyloidosis is the most common systemic amyloid disease characterized by abnormal accumulation of amyloid fibrils derived from immunoglobulin light chains (LCs). Both full-length (FL) LCs and their isolated variable (VL) and constant (CL) domains contribute to amyloid deposits in multiple organs, with the VL domain predominantly forming the fibril core. However, the role and interplay of these domains in amyloid aggregation and toxicity are poorly understood.

View Article and Find Full Text PDF

Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics.

Nat Commun

January 2025

Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs.

View Article and Find Full Text PDF

Knotted proteins have a unique topological feature with an open knot, and the physiological significance of these knots remains elusive. In addition, these proteins challenge our understanding of the protein folding process, and whether they retain their native state during unfolding/refolding cycles like other proteins is debated. Most folding studies on knotted proteins have been performed on 3 and 5 knots, monitoring the tryptophan fluorescence.

View Article and Find Full Text PDF

Knot-knot chronicles: unveiling the G-quadruplexes.

Crit Rev Biotechnol

January 2025

Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India.

G-quadruplex structures (GQSes) are the intricate molecular knots or marvels that play diverse roles in various cellular processes, such as replication, transcription, and translation, which regulate gene expression. Even though GQSes can be found throughout the genome, they are more prevalent in certain genomic regions like promoters and 5'-UTRs. This review discusses the functionality of GQSes across various regions of the genome and draws attention to the intriguing world of DNA and RNA GQSes.

View Article and Find Full Text PDF
Article Synopsis
  • The TALE superfamily genes, crucial for plant growth and stress responses, were analyzed in B. napus, revealing 74 genes across 19 chromosomes.
  • Phylogenetic analysis categorized these genes into two main subfamilies (BEL1-like and KNOX), with KNOX further divided into three clades, suggesting common biological functions within subdivisions.
  • The study found that BnTALE gene expression varies by tissue and is activated by various abiotic stresses, indicating their potential for enhancing stress resistance in plants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!