Recovery of lithium and cobalt from lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries using supercritical water.

Environ Pollut

Department of Chemical Engineering, State University of Maringá (UEM), Maringá, PR, 87020-900, Brazil; School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; School of Engineering, Sao Paulo State University (UNESP), Campus of Sao Joao da Boa Vista, Sao Joao da Boa Vista, SP, 13876-750, Brazil. Electronic address:

Published: October 2024

This study investigates the eco-friendly extraction of metal oxides from LCO and NMC batteries using supercritical water. Experiments were conducted at 450 °C with a feed rate of 5 mL min and varying battery/PVC ratios (0.0, 2.0, and 3.0). The products were analyzed by X-ray diffractometry (XRD), atomic absorption spectrometry (FAAS) and gas chromatography-mass spectrometry (GC-MS). Results show the presence of cobalt chloride (CoCl) and lithium (Li) in the liquid products, achieving 100% cobalt recovery under all conditions. The gaseous products obtained hydrogen with molar compositions up to 78.3% and 82.7% for LCO:PVC and NMC:PVC batteries, respectively, after 60 min of reaction. These findings highlight the potential of this methodology for lithium-ion battery recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124570DOI Listing

Publication Analysis

Top Keywords

lithium cobalt
8
cobalt oxide
8
batteries supercritical
8
supercritical water
8
cobalt
5
recovery lithium
4
cobalt lithium
4
oxide lithium
4
lithium nickel
4
nickel manganese
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!