This study examined the influence of nanomaterials (NMs) on the organization of membrane lipids and the resulting morphological changes. The cell plasma membrane is heterogeneous, featuring specialized lipid domains in the liquid-ordered (L) phase surrounded by regions in the liquid-disordered (L) phase. We utilized model membranes composed of various lipids and lipid mixtures in different phase states to investigate the interactions between the NMs and membrane lipids. Specifically, we explored the interactions of pure chitosan (CS) and CS-modified nanocomposites (NCs) with ZnO, CuO, and SiO with four lipid mixtures: egg-phosphatidylcholine (EggPC), egg-sphingomyelin/cholesterol (EggSM/Chol), EggPC/Chol, and EggPC/EggSM/Chol, which represent the coexistence of L, L, and L/L, respectively. The data show that CS NMs increase the membrane lipid order at glycerol level probed by Laurdan spectroscopy. Additionally, the interaction of CS-based NMs with membranes leads to an increase in bending elasticity modulus, zeta potential, and vesicle size. The lipid order changes are most significant in the highly fluid L phase, followed by the L/L coexistence phase, and are less pronounced in the tightly packed L phase. CS NMs induced egg PC vesicle adhesion, fusion, and shrinking. In heterogeneous L/L membranes, inward invaginations and vesicle shrinking via the L phase were observed. These findings highlight mechanisms involved in CS NM-lipid interactions in membranes that mimic plasma membrane heterogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133983 | DOI Listing |
J Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.
View Article and Find Full Text PDFAnal Chem
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFEMBO J
January 2025
Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!